#### Top Quark Physics Results at the Tevatron



Lucio Cerrito Queen Mary, University of London

#### (on behalf of the CDF and $D\emptyset$

Collaborations)



Heavy Quarks and Leptons *Munich, October 2006* 

## Introduction

quark

W

W



Lucio Cerrito - Top Physics Results at the Tevatron -

## Why top physics

- ➤Test of SM (production, decay, coupling....etc)
- $\succ$  Does not hadronize:
- momentum and spin transferred to decay products
- ➤ Search for processes with similar signature (t', Z', V+A..)
- Measure the t mass, to predict the SM Higgs mass
- The Tevatron is performing the first precision exploration of the topquark energy regime



### **Experimental Overview**

The Tevatron top physics program seen from the perspective of precision:

Measurement already/towards limited by:

#### Luminosity Uncertainty

Pair production cross section Systematics

Top quark mass

#### **Statistics**

Polarizations Single top production |V<sub>tb</sub>|, top charge, resonances

#### Summary and Outlook



#### The Tevatron at Fermilab

Batavia, Illinois

- Proton-antiproton collisions at 1.96 TeV
- > 396 ns bunch spacing
- > Run | operating | 992-| 996
- ➤ Run II operating since 2001

The only accelerator capable today of producing top quarks.



## **Tevatron performance**

Top quarks are still relatively rare at 1.96 TeV, therefore <u>luminosity</u> is key.

➤The peak luminosity is approaching the machine design (3.3x10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>)

➤The weekly luminosity is following suit

➤The FY06 integrated luminosity was slightly behind



## The Experiments



Top quark measurements rely on all detectors for electrons, muons, jets, MET and *b*-tagging.

#### Datasets and analyses



Collision data delivered and recorded vs. time

➤ Nearly 2 fb<sup>-1</sup> of collisions delivered (Run IIa goal), ~85% on tape

## Top quark, production at 1.96 TeV

*qq* annihilation via strong interaction (~85% at the Tevatron)

*gg* fusion (dominant at LHC)



NOTE: Production through virtual Z and  $\boldsymbol{\gamma}$  are much smaller

#### Single:

Pair:

Not observed yet, due to larger backgrounds



Harris, Laenen, Phaf, Sullivan, Weinzierl, PRD 66 (02) 054024. Campbell, Ellis, Tramontano, PRD 70 (04) 094012.

#### **Theoretical Predictions**

- t-tbar NLO QCD (mt=175 GeV/c<sup>2</sup>)
  - ≻ 6.8±0.8 pb (Kidonakis, Vogt)
- > 6.8<sup>+0.7</sup><sub>-0.9</sub> pb (Cacciari et al.)

Single top NLO QCD (mt=175 GeV/c<sup>2</sup>)

- >I.98±0.25 pb (t-channel)
- ≻0.88±0.11 pb (s-channel)

## Top decay and event classification



Lucio Cerrito - Top Physics Results at the Tevatron -

## **Experimental Overview**

The Tevatron top physics program seen from the perspective of precision:

#### Measurement already/towards limited by:

#### Luminosity Uncertainty

Pair production cross section Systematics

Top quark mass

#### **Statistics**

Polarizations Single top production |V<sub>tb</sub>|, top charge, resonances

#### Summary and Outlook



## Pair production

- Comparison in different channels works as a non-SM search
- Precise average is important as pair-production test & against non-SM
- Basis for other measurements



Lucio Cerrito - Top Physics Results at the Tevatron -

## Pair production



Lucio Cerrito - Top Physics Results at the Tevatron -

## Channel-by-channel cross section



Individual measurements are accurate to within ~15-30% (excl. lumi.)
 The CDF combination includes 6 measurements, accounting for all decay channels.

≻The combined accuracy is similar (~12%) to the theory uncertainty

## CDF II average cross section



> Due to ~±12% (theory)  $\Rightarrow \delta M_t > 4 GeV/c^2$  for top mass measurements from the cross section

## **Experimental Overview**

The Tevatron top physics program seen from the perspective of precision:

#### Measurement already/towards limited by:

Luminosity Uncertainty Pair production cross section

#### **Systematics**

#### Top quark mass

#### **Statistics**

Polarizations Single top production |V<sub>tb</sub>|, top charge, resonances

#### Summary and Outlook



## Determining the top mass

#### **Template Method**

Compare to MC templates an observable that is strong function of the top mass

Rec Mass 1-Tag(T): CDF Preliminary



#### **Matrix Element Method**



Calculate a probability per each event:

Use the differential cross section: LO Matrix element

Determine the probability that a parton level set of variables **y** will be measured as a set of variables **x** 

Maximize  $\Pi_i P^i (M_{top})$ 

In I+jets, both methods simultaneously fit for the JES

#### Top mass measurements



## 2006 Tevatron M<sub>top</sub> average



Note: historically there is a trend between all-jets and dilepton

## The consequences of M<sub>top</sub>



Note:  $\Delta M_t$ =3 GeV corresponds to ~±20% uncertainty of the predicted M<sub>H</sub>

## Top mass outlook

New results are better than our predictions in March

Will add to the prediction the all-jets channel

Add JES to all-jets could also make sensitivity comparable to lepton+jets

DØ has similar sensitivity (new results with 1fb<sup>-1</sup> coming soon)

Expect to achieve an uncertainty of ~1-1.5 GeV/c<sup>2</sup> in the next years

#### CDF-only precision expectation



## **Experimental Overview**

The Tevatron top physics program seen from the perspective of precision:

#### Measurement already/towards limited by:

Luminosity Uncertainty Pair production cross section Systematics Top quark mass

#### Statistics

Polarizations Single top production |V<sub>tb</sub>|, top charge, resonances

#### Summary and Outlook



## Helicity of W bosons in top decays

#### Are there new interactions in top quark decay ?

Positive helicity F<sub>+</sub> suppressed by chiral factors ~  $M_b^2 / M_W^2$ Relative fraction of  $F_0$  is:

$$F_0 = \frac{M_t^2 / 2M_W^2}{1 + M_t^2 / 2M_W^2} \cong 0.7$$



**F**\_Left-Handed fraction









Lucio Cerrito - Top Physics Results at the Tevatron -

## F<sub>0</sub> and F<sub>+</sub> fractions

Combined *I*+jets and dilepton samples

 $\succ$  Single and double *b*-tag separately

 $\succ$  Compares rec.  $M^2_{lb}$  to  $V \pm A$  templates

 $F_{+} = -0.02 + 0.07$ 

F<sub>+</sub> < 0.09 95%CL

> Template based Likelihood analysis of  $\cos \theta^*$ , fit for F<sub>+</sub> and F<sub>0</sub>

Lepton+jets sample: ~200 events

Best value, fixing F<sub>+</sub>=0:

 $F_0 = 0.61 \pm 0.12(stat) \pm 0.04(syst)$ 



Lucio Cerrito - Top Physics Results at the Tevatron -

## Search for single top production



#### Signature

➤ Lepton+Missing E<sub>T</sub>+ Jets

> *t*-channel extra jet tends to be forward > similar to top pair production, but with less jets

#### Backgrounds

Anything with a lepton+jets+MET signature (W+jets, bb, tt, Z+jets)

#### **Motivation**

- $\succ$  Is it there ?
- > Cross section  $\propto |V_{tb}|^2$
- > same final state as WH (H $\rightarrow$ bb)

➤ Allows for several other measurements (polarization..) and searches (W'...)

#### Strategies

Combined search (for discovery)

Separate search (for non-SM searches)

#### Methods

- Likelihood discriminant
- Neural Network

### **Combined** limit



```
NN Limit: < 3.4 pb @ 95% C.L.
NN Best Fit: 0.8<sup>+1.3</sup>-0.8(stat)<sup>+0.2</sup>-0.3(syst) pb
```

~2.5 $\sigma$  sensitivity !

## Separate limits



## Top quark charge



Requires *b*-quark charge from jet charge

≻Sum of charge of tracks in *b*-jet
≻Calibrated using *bb* dijets, with 1 soft µ

$$L\left(\rho,q\right) = \prod_{i=1}^{N_{\text{data}}} (1-\rho) P_{\text{SM}}(q_i) + \rho P_{\text{ex}}\left(q_i\right)$$

$$\uparrow$$
exotic quark



 $\rho = -0.13 \pm 0.66(\text{stat}) \pm 0.11(\text{syst})$  $\rho < 0.8 @ 90\% \text{ C.L.}$ 

|q|=4e/3 excluded at 92% C.L.

Lucio Cerrito - Top Physics Results at the Tevatron -

## Measurement of |V<sub>tb</sub>|

Under the assumption of unitarity and three generations of quarks:  $0.9980 < |V_{tb}| < 0.9984$  at 90% C.L.



Lucio Cerrito - Top Physics Results at the Tevatron -

## Search for $t\bar{t}$ resonances

Models with a dynamically broken EW symmetry (technicolor) predict a topquark condensate, X, that decays to a *t-tbar pair*.

Search for tt resonances, the limit is generally model-independent, look at the t-tbar invariant mass:



## Summary and Outlook

The Tevatron top physics program seen from the perspective of precision:

Measurement already/towards <u>limited by</u>: Luminosity Uncertainty Pair production cross section..... **Systematics** 

#### **Statistics**

Polarizations..... Single top production..... Properties.....charge..... ....V<sub>tb</sub>..... .... resonance.....



#### **Additional Information**

## gg vs qq production

#### Test of the ttbar production mechanism (qq, vs gg)



# F<sub>o</sub> fraction

Unfold w/ migration matrix, compare to theory *lep*+4 or more jets using all assignments; weighed. fit for F<sub>+</sub> and F<sub>0</sub>
 Lepton+jets sample: ~200 events

 $F_0 = 0.59 \pm 0.12(stat) \pm 0.06(syst)$ 

- > Template based Likelihood analysis of  $\cos \theta^*$ , fit for F<sub>+</sub> and F<sub>0</sub>
- Lepton+jets sample: ~200 events

Best value, fixing F<sub>+</sub>=0:

$$F_0 = 0.61 \pm 0.12(stat) \pm 0.04(syst)$$



Lucio Cerrito - Top Physics Results at the Tevatron -

## Tevatron Performance



Lucio Cerrito - Top Physics Results at the Tevatron -

## **Top Mass Measurements**

