

Klaus Jungmann 2006 EDM Experiments





Heavy Quarks and Leptons16.10 - 20.10.2006 Munich, Germany

# Searches for permanent Electric Dipole Noments

- Fundamental Symmetries and Forces
- Discrete Symmetries
- Fundamental Fermions
- Models Beyond Standard Theory
- Precision Experiments
- How to Compare Experiments
- Other approaches to same Physics Questions

### $\Rightarrow$ only scratching some examples



Klaus Jungmann, KVI, University of Groningen

#### 3rd International Symposium on LEPTON MOMENTS

Centerville, Cape Cod, MA 19 - 22 June 2006



# Ramsey Price established:



9:45

10:00

10:45

Coffee Break

Yoshi Kuno (Osaka) (35)

Andrzej Czarnecki

(Alberta) (50)

|       | 1                                               | TUESDAY 20 JUNE 2006                                                                        |
|-------|-------------------------------------------------|---------------------------------------------------------------------------------------------|
| 8:30  | Ulrich Jentschura<br>(HPI Heidelberg) (35)      | The Bound-electron g-factor (add)                                                           |
| 9:15  | Wolfgang Quint<br>(GSI) (35)                    | Bound state g-factors and the electron mass (and)                                           |
| 10:00 | Coffee Break<br>Adam Ritz                       | Probing new CP-odd thresholds with EDHs ( pdf)                                              |
| 11:00 | (Victoria) (35)<br>Junji Hisano<br>(Tokyo) (35) | EDMs and Lepton Flavor Violation (2007)                                                     |
| 11:45 | Lunch                                           |                                                                                             |
| 1:15  | Maxim Pospelov<br>(Victoria) (35)               | Breaking unbreakable: Lorentz, CPT violation, and the<br>change of couplings in Time ( edd) |
| 2:00  | Jon Engel<br>(North Carolina) (40)              | Nuclear Physics of Atomic EDMs ( edf)                                                       |
| 2:50  | Coffee Break                                    |                                                                                             |
| 3:15  | Ed Hinds<br>(Imperial) (40)                     | Heasurement of the electron EDM using cold YbF molecul<br>(pdf)                             |
| 4:05  | David DeMille<br>(Yale) (40)                    | The PbO Experiments at Yale (cot)                                                           |
| 4:55  | Klaus Jungmann<br>(KVI Groningen) (15)          | TRIMP: A new facility for fundamental symmetry researc<br>(cot)                             |
| 5:20  | Break for the Day                               | _                                                                                           |
|       | w                                               | EDNESDAY 21 JUNE 2006                                                                       |
| 8:45  | David Weiss                                     | Update on Heasuring the Electron EDM Using Cs and Rb                                        |
| 9:20  | (Penn State) (25)<br>Eric Cornell               | Searching for an Electron EDM in trapped molecular                                          |
| 10-05 | Collee Break                                    | 2000 ( <u>200</u> )                                                                         |
| 10.02 |                                                 |                                                                                             |
| 10:30 | (Oklahoma) (20)                                 | Possible Measurement of the e-edm with g=0<br>Paramagnetic Molecules( <u>pot</u> )          |
| 11:00 | Jen-Chieh Peng<br>(Illinois) (J5)               | The New Search for a neutron EDM at the SNS (                                               |
| 11:45 | Lunch                                           |                                                                                             |
| 1:15  | James Karamath<br>(Sussex) (35)                 | The ILL Cryogenic- neutron EDH Experiment (app. pdf)                                        |
| 2:00  | Klaus Kirch<br>(PSI) (35)                       | Search for an EDM of the neutron at PSI(act)                                                |
| 2:40  | Norval Fortson                                  | Search for an EDM of the 199Hg Atom (pdf)                                                   |
| 3:30  | (Washington) (35)<br>Cofee Break                |                                                                                             |
| 3:45  | Mike Romalis<br>(Princeton) (15)                | EDM experiments with Xenon (pdf)                                                            |
| 4:30  | Roy Holt<br>(Argonne) (35)                      | Search for an EDM of 225Ra(add)                                                             |
| 5:15  | Break for Day                                   |                                                                                             |
|       | T                                               | HURSDAY 22 JUNE 2006                                                                        |
| 8:45  | Gerco Onderwater<br>(KVI Groningen) (30)        | Search for EDMs in storage rings ( add)                                                     |
| 9:25  | Yuri Orlev<br>(Connell) (15)                    | Systematic Errors for Measurements of EDMs in storage<br>rings (pdf)                        |

Experimental Searches for Lepton Flavor Violation ( 459 off)

Conference Summary and Outlook (add)

Large fraction of all EDM experiments represented

Plurality of
 Old Approaches
 New Experiments
 Novel Ideas
 discussed





# What are we concerned with P



## **Forces and Symmetries**

Local Symmetries ⇔ Forces • fundamental interactions

#### **Global Symmetries** $\Leftrightarrow$ **Conservation Laws**

- energy
- momentum
- electric charge
- lepton number
- charged lepton family number
- baryon number
- • • •

### **Fundamental Interactions – Standard Model**





## **Possibilities to Test New Models**







High Energies & direct observations







### Low Energies & Precision Measurement

- **Parity P** 
  - is violated
  - β-decay
- Time Reversal T
  - Reported violated directly in K-decay
- **CPT Invariance CPT** 
  - No observed violation reported yet, searched for
  - Strong theorem
- Combined Charge Conjugation and Parity CP
  - K, B mesons
  - with CPT assumed CP violation implies T violation



At present we have activities in particular to study:

- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering
- Time Reversal and CP-Violation
  - Electric Dipole Moments
  - R and D Coefficients in  $\beta$ -Decay
- **CPT Invariance**

At present we have activities in particular to study:

- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering
- Time Reversal and CP-Violation
  - Electric Dipole Moments
  - R and D Coefficients in  $\beta$ -Decay
- CPT Invariance

## **Possible Gains from Parity Violation Experiments**



#### In past: - excellent test of Standard Model

#### Now:

- running of weak mixing angle
- sensitivity to some leptoquark models, Z'
- s-quark content of nucleon
- neutron distributions in nuclei
- anapole moments
- Cs, Fr Atomic Parity Violation experiments are going on
- electron scattering & hadron forward scattering going on

At present we have activities in particular to study:

- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering

#### Time Reversal and CP-Violation

- Electric Dipole Moments
- R and D Coefficients in β-Decay
- CPT Invariance

At present we have activities in particular to study:

- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering

#### Time Reversal and CP-Violation

- Electric Dipole Moments
- R and D Coefficients in β-Decay
- CPT Invariance

# What's particular about CP-violation P

Matter – Antimatter Asymmetry <u>MAY</u> be explained by (Sacharov)

- Baryon number violation
- Thermal non equilibrium
- CP- violation

**Beware: There are other routes!** 

e.g.

Matter – Antimatter Asymmetry MAY be also

explained by (Kostelecky et al.):

- Baryon number violation
- CPT violation

# Fundamental Particles



**J** is the only vector characterizing a non-degenerate quantum state

magnetic moment:  $\vec{\mu}_x = g \ \mu_x \ c^{-1} \ \vec{J}$ 

electric dipole moment:  $\vec{\mathbf{d}}_{\mathbf{x}} = \mathbf{\eta} \ \mathbf{\mu}_{\mathbf{x}} \ \mathbf{c}^{-1} \ \vec{\mathbf{J}}$ 

magneton:

 $\mu_x = e\hbar / (2m_x)$ 

 $\mu_{x} c^{-1} J = \begin{cases} 9.7 \cdot 10^{-12} e cm (electron) \\ 5.3 \cdot 10^{-15} e cm (nucleon) \end{cases}$ 

### **Permanent Electric Dipole Moments Violate Discrete Fundamental Symmetries**



# $H=-(d E+\mu B) J/J$

d - electric dipole moment
μ - magnetic dipole mom
J - Spin

### **EDM violates:**

- Parity
- Time reversal
- CP- conservation

(if **CPT** conservation assumed)

**Standard Model values are tiny, hence:** 

An observed EDM would be Sign of New Physics beyond Standard Theory

### Permanent Electric Dipole Moments are predicted by the Standard Model

and

#### a variety of Models Beyond Standard Theory

- Strong CP Violation
  LeftRight Symmetry
- Supersymmetry
- Higgs Models
  - Technicolor

. . .

No status in Physics, yet

"Not even wrong"

There is no indication whatsoever given by nature, yet, which would justify to prefer any of these possibilities

# Schiff Theorem introduced by Ramsey and Purcell

- A neutral system composed of charged objects re-arranges in an external electric field such that the net force on it cancels on average.
- This may give rise to
  - significant shielding of the field at the location of the particle of interest
  - (strong) enhancement of the EDM effect
- "Schiff corrections" need to be looked at very carefully – there is a need for theoretical support

# **Enhancement of EDM in Atomic Shell**

- Heavy Atoms  $d_A/d_e \approx 10 Z^3 \alpha^2$
- Induced Dipol Moment

→ Polarizability in nucleus as well as atomic shell

$$d_{A} = \sum_{n'} \frac{\langle nl \mid -d_{e}(\beta-1) \overrightarrow{\sigma} \overrightarrow{E} \mid n'(l+1) \rangle \langle n'(l+1) \mid -\overrightarrow{er} \mid nl \rangle}{E_{nl} - E_{n'(l+1)}} + c.c.$$

• Example: Tl ~ -585, Fr ~ 1150, Ra ~ 40.000

- A Nucleus is more that the sum of Nucleons
- **Neutron has EDM of the Nucleon e.g.**

Nucleus carries Nucleon EDM plus **EDM from CP-odd Nucleon-Nucleon** Forces



<u>g</u>

- **Nucleus may induce EDM into Atom** 
  - screening dipole operator  $\vec{d} \equiv$





PHYSICAL REVIEW LETTERS

VOLUME 86, NUMBER 12

PHYSICAL REVIEW LETTERS

Electron

18 FEBRUARY 2002

#### New Limit on the Permanent Electric Dipole Moment of 199 Hg

M. V. Romalis, W. C. Griffith, J. P. Jacobs,\* and E. N. Fortson Department of Physics, University of Washington, Seattle, Washington 98195 (Received 21 November 2000)

We present the first results of a new search for a permanent electric dipole moment of the 199 Hg atom using a UV laser. Our measurements give  $d^{(199}Hg) = -(1.06 \pm 0.49 \pm 0.40) \times 10^{-28}e$  cm. We interpret the result as an upper limit  $|d(^{199}Hg)| < 2.1 \times 10^{-28}e$  cm (95% C.L.), which sets new constraints on  $\bar{\theta}_{OCD}$ , chromo-EDMs of the quarks, and CP violation in supersymmetric models.

#### New Limit on the Electron Electric Dipole Moment

#### B.C. Regan,\* Eugene D. Commins,<sup>†</sup> Christian J. Schmidt,<sup>‡</sup> and David DeMille<sup>§</sup> Physics Department, University of California, Berkeley, California 94720 and Lawrence Berkelev National Laboratory, Berkeley, California 94720 (Received 8 August 2001; published 1 February 2002)

We present the result of our most recent search for T violation in  $^{205}$ TI, which is interpreted in terms of an electric dipole moment of the electron  $d_e$ . We find  $d_e = (6.9 \pm 7.4) \times 10^{-28} e$  cm, which yields an upper limit  $|d_e| \le 1.6 \times 10^{-27} e$  cm with 90% confidence. The present apparatus is a major upgrade of the atomic beam magnetic-resonance device used to set the previous limit on d<sub>e</sub>.



FIG. 1. Schematic diagram of the experiment; not to scale.



FIG. 1. Schematic of the apparatus used to search for a permanent EDM of 199Hg atoms.



FIG. 2. 199 Hg EDM signal as a function of run number. The solid line shows the average of the data. Runs with larger errors were done in nonoptimal configurations.

1 Jul 2004 7 arXiv:hep-ex/0407008

#### Apparent progress in Mercury ⇒ Systematics is an THE issue

## Overview of EDM data after November 2005

- About 120 runs thus far
- Blind analysis instituted about half-way through
- Result of first half (before blind analysis):
  - $d(^{199}Hg) = [-5.4 \pm 4.1_{stat.} \pm ??_{syst.}] \times 10^{-29} e \text{ cm}$
  - Compare with 2001 result:  $[-10.6 \pm 4.9_{stat.} \pm 4.0_{syst.}] \times 10^{-29} e \text{ cm}$
- Statistical sensitivity per run has improved in recent months
  - Total statistical error thus far:  $\pm 2.9_{\text{stat.}} \times 10^{-29} e \text{ cm}$
  - Projected after 6 more months:  $\pm 1.5_{stat.} \times 10^{-29} e$  cm
- Major remaining issue: Systematics!
  - Aiming for  $\pm 1.5_{\text{syst}} \times 10^{-29} e \text{ cm}$

From: N. Fortson, Lepton Moments 2006

Neutron

PRL 97, 131801 (2006)

PHYSICAL REVIEW LETTERS

#### Muon

Improved Experimental Limit on the Electric Dipole Moment of the Neutron

C. A. Baker,<sup>1</sup> D. D. Doyle,<sup>2</sup> P. Geltenbort,<sup>3</sup> K. Green,<sup>1,2</sup> M. G. D. van der Grinten,<sup>1,2</sup> P. G. Harris,<sup>2</sup> P. Iaydjiev,<sup>1,\*</sup> S. N. Ivanov,<sup>1,†</sup> D. J. R. May,<sup>2</sup> J. M. Pendlebury,<sup>2</sup> J. D. Richardson,<sup>2</sup> D. Shiers,<sup>2</sup> and K. F. Smith<sup>2</sup>

<sup>1</sup>Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
<sup>2</sup>Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BNI 9QH, United Kingdom
<sup>3</sup>Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France

(Received 9 February 2006; revised manuscript received 29 March 2006; published 27 September 2006)

An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. The results may be interpreted as an upper limit on the neutron EDM of  $|d_n| < 2.9 \times 10^{-26} e$  cm (90% C.L.).

#### DOI: 10.1103/PhysRevLett.97.131801

PACS numbers: 13.40.Em, 07.55.Ge, 11.30.Er, 14.20.Dh



FIG. 1 (color online). Experimental apparatus.



FIG. 2 (color online). Measured EDM (binned data) as a function of the relative frequency shift of neutrons and Hg. arXiv:hep-ex/0407008 v1 1 Jul 2004

#### An Improved Limit on the Electric Dipole Moment of the Muon

Ronald McNabb (for the Muon g-2 collaboration) Dept. of Physics, University of Illinois at Urbana-Champaign 1110 W Graven St., Urbana, IL 61801, USA.

Data from the muon g-2 experiment at Brookhaven National Lab has been analyzed to search for a muon electric dipole moment(EDM), which would violate parity and time reversal symmetries. An EDM would cause a tilt in the spin precession plane of the muons, resulting in a vertical oscillation in the position of electrons hitting the detectors. No signal has been observed. Based on this analysis, an improved limit of  $2.8 \times 10^{-19}$ e-cm(96% CL) is set on the muon EDM.



Figure 1: A muon EDM would tilt the spin precession plane.



Figure 2: A tilt in the precauton plane results in a vertical oscillation of hits on the detector face.

#### **Theoretical work close to Experiment ...**

VOLUME 89, NUMBER 13

PHYSICAL REVIEW LETTERS

#### Enhancement of the Electric Dipole Moment of the Electron in PbO

M. G. Kozlov\* Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia

#### D. DeMille<sup>†</sup>

Physics Department, Yale University, New Haven, Connecticut 06520 (Received 23 May 2002; published 4 September 2002)

The *a*(1) state of PbO can be used to measure the electric dipole moment of the electron  $d_e$ . We discuss a semiempirical model for this state, which yields an estimate of the effective electric field on the valence electrons in PbO. Our final result is a lower limit on the measurable energy shift, which is significantly larger than was anticipated earlier:  $2|W_d|d_e \ge 2.4 \times 10^{25} \text{ Hz}[\frac{d_e}{d_e}]$ .

#### A new method of measuring electric dipole moments in storage rings

F.J.M. Farley<sup>7</sup>, K. Jungmann<sup>4</sup>, J.P. Miller<sup>2</sup>, W.M. Morse<sup>3</sup>, Y.F. Orlov<sup>5</sup>, B.L. Roberts<sup>2</sup>, Y.K. Semertzidis<sup>3</sup>, A. Silenko<sup>1</sup>, E.J. Stephenson<sup>6</sup>

sian State University, Belarus; <sup>2</sup>Physics Department, Boston University, Boston, MA 02215; baven National Laboratory, Upton, NY 11973; <sup>4</sup>Kernfysisch Versneller Instituut, Groningen; ratory, Cornell University, Ithaca, NY 14853; <sup>6</sup>IUCF, Indiana University, Bloomington, IN 47408; <sup>7</sup>Department of Physics, Yale University, New Haven, CT 06520.

#### (Dated: July 10, 2004)

w highly sensitive method of looking for electric dipole moments of charged particles in ; rings is described. The major systematic errors inherent in the method are addressed and o minimize them are suggested. It seems possible to measure the muon EDM to levels that sculative theories beyond the standard model



23 SEPTEMBER 2002

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 633 (2006) 319-324

www.elsevier.com/locate/physletb

VOLUME 89, NUMBER 10

PHYSICAL REVIEW LETTERS

...and more in Speculative Spheres

2 SEPTEMBER 2002

#### Electric Dipole Moments in the Limit of Heavy Superpartners

Oleg Lebedev and Maxim Pospelov Centre for Theoretical Physics, University of Sussex, Brighton BNI 9QJ, United Kingdom (Received 30 April 2002; published 15 August 2002)

Supersymmetric loop corrections induce potentially large *CP*-violating couplings of the Higgs bosons to nucleons and electrons that do not vanish in the limit of heavy superpartners. The Higgs-mediated *CP*-odd four-fermion operators are enhanced by  $\tan^3\beta$  and induce electric dipole moments of heavy atoms which exceed the current experimental bounds for the electroweak scale Higgs masses and  $\tan\beta \ge$  10. If only the first two sfermion generations are heavy, the Higgs-mediated contributions typically dominate over the Barr-Zee type two-loop diagrams at  $\tan\beta \ge$  30.

DOI: 10.1103/PhysRevLett.89.101801

PACS numbers: 12.60.Jv, 11.30.Er, 13.40.Em

VOLUME 84, NUMBER 24

PHYSICAL REVIEW LETTERS

VOLUME 84, NUMBER 24

PHYSICAL REVIEW LETTERS

- icale

12 JUNE 2000

Erratum: Electric Dipole Moments and the Mass Scale of New T-Violating, P-Conserving Interactions [Phys. Rev. Lett. 83, 3997 (1999)]

M. J. Ramsey-Musolf

#### <sup>a</sup> Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA <sup>b</sup> Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

Department of Physics, University of Maximgton, Seattle, 19:3 99:195-1560, US Received I October 2005; accepted 19 November 2005 Available online 29 November 2005 Editor: H. Georgi

Donal O'Connell<sup>a,\*</sup>, Martin J. Savage<sup>b</sup>

apolation formulas for neutron EDM calculations in lattice QCD



Available online at www.sciencedirect.com

SCIENCE

PHYSICS LETTERS B

Physics Letters B 624 (2005) 239-249

www.elsevier.com/locate/physletb

#### Hadronic EDM constraints on orbifold GUTs

Junji Hisano, Mitsuru Kakizaki, Minoru Nagai

ICRR, University of Tolyo, Kashiwa 277-8582, Japan Received 6 June 2005; received in revised form 17 July 2005; accepted 3 August 2005

In the text following Eq. (10), the expression for the integral in Eq. (10) should read  $(1/4)[2 + 6g_A/5] \approx 0.88$ . 4)  $[2 + 6g_A/5] \approx 0.88$ .

## **Some EDM Experiments compared**



## **EDM Limits as of summer 2006**

|            |                           |                         | Possible       |
|------------|---------------------------|-------------------------|----------------|
| Particle   | Exp. Limit                | SM                      | New Physics    |
|            | $[10^{-27} e \text{ cm}]$ | [factor to go]          | [factor to go] |
| e (Tl)     | < 1.6                     | <b>10</b> <sup>11</sup> | ≤1             |
| μ          | $< 1.05 * 10^{9}$         | 10 <sup>8</sup>         | <b>≤ 200</b>   |
| τ          | $< 3.1 * 10^{11}$         | <b>10</b> <sup>7</sup>  | <b>≤ 1700</b>  |
| n          | < 29                      | <b>10<sup>4</sup></b>   | <b>≤ 30</b>    |
| Tl (odd p) | < 10 <sup>5</sup>         | <b>10</b> <sup>7</sup>  | $\leq 10^5$    |
| Hg (odd n) | < 0.21                    | <b>10<sup>5</sup></b>   | various        |
|            |                           |                         |                |
|            |                           |                         |                |

- Why so many?
- Which is THE BEST candidate to choose ?

**None is THE BEST - We need many experiments!** 

## **EDMs** – Where do they come from ?

(are they just "painted" to particles? Why different experiments?)

- electron
- quark
- muon
- neutron/ proton
- deuteron
- <sup>6</sup>Li
- heavy nuclei (e.g. Ra, Fr)
- atoms
- molecules
- . . . .

intrinsic? intrinsic? second generation different? from quark EDM ? property of strong interactions? new interactions? basic nuclear forces CP violating? pion exchange ? many body nuclear mechanism? enhancement by CP-odd nuclear forces, nuclear "shape" can have large enhancement, sensitive to electron or nucleus EDMs large enhancement factors, sensitive to electron EDM



## **Possible Sources of EDMs**



#### Why a deuteron edm experiment



"Thus, these two EDM measurements probe different linear combinations of  $d_d^c$  and  $d_u^c$  in this case. Moreover, the deuteron could be significantly more sensitive than the neutron."

C.P. Liu and R.G.E Timmermans, Phys.Rev.C 70, 055501 (2004)

## **Generic EDM Experiment**



## **Generic EDM Experiment Sensitivity**



 $\Rightarrow$  Work on

- high Polarization , high Field
- high Efficiency
- long Coherence Time
- ⇒ one day gives more statistics than needed to reach previous experimental limits

#### Lines of attack towards an EDM

| <ul> <li>→ particle EDM</li> <li>→ unique information</li> <li>→ new insights</li> <li>→ new techniques</li> <li>→ challenging</li> </ul> | neutron<br>muon<br>deuteron<br>bare nuclei ?<br><br>Elect<br>Dipo | Hg Xe<br>Tl<br>Cs Rb<br>Ra Rn<br>                                                                                               | Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atom<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms<br>Atoms |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| technology                                                                                                                                | Mon                                                               | nent                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\rightarrow$ electron EDM                                                                                                                | <b>g</b> 08                                                       | al:                                                                                                                             | → electron EDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\rightarrow$ strong enhancements                                                                                                         | new sourc                                                         | e of CP / -                                                                                                                     | → strong enhancements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\rightarrow$ new techniques                                                                                                              |                                                                   | -                                                                                                                               | → systematics ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| → poor spectroscopic                                                                                                                      | YbF                                                               |                                                                                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| data available<br>Molecules                                                                                                               | PbO<br>PbF<br>HfF <sup>+</sup> ,ThF <sup>+</sup>                  | garnets<br>(Gd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub> )<br>(Gd <sub>3</sub> Fe <sub>2</sub> Fe <sub>3</sub> O<br>lq. He ? | 12) Solid State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# New Experimental Approaches

- Molecules
  - strong Enhancement through internal fields
  - ♦ YbF, PbO
- Radioactive Atoms
  - fortunate atomic level scheme in Radium
  - nuclear enhancement through deformations
- Charged particles
  - Schiff Theorem circumvented in non-trivial geometry
  - novel idea to exploit motional electric fields in storage rings
  - muon, nuclei, deuteron, molecules (ThF<sup>+</sup>)
- Condensed matter
  - alkali atoms in solid He
  - neutrons in superfluid He
  - magnetization in paramagnetic material
  - liquid Xe
- Atoms using novel ideas
  - Xe with "nuclear maser"
  - Rb, Cs in optical lattices

# New Experimental Approaches

#### Molecules

- strong Enhancement through internal fields
- ◆ YbF, PbO
- Radioactive Atoms
  - fortunate atomic level scheme in Radium
  - nuclear enhancement through deformations
- Charged particles
  - Schiff Theorem circumvented in non-trivial geometry
  - novel idea to exploit motional electric fields in storage rings
  - muon, nuclei, deuteron, molecules (ThF<sup>+</sup>)
- Condensed matter
  - alkali atoms in solid He
  - neutrons in superfluid He
  - magnetization in paramagnetic material
  - liquid Xe
- Atoms using novel ideas
  - Xe with "nuclear maser"
  - Rb, Cs in optical lattices

Permanent Electric Dipole Moments

**Radium Atom** 

### Radium Permanent Electric Dipole Moment





Ra also interesting for weak interaction effects Anapole moment, weak charge (Dzuba el al., PRA 6, 062509)

### **Benefits of Radium**

- near degeneracy of  ${}^{3}P_{1}$  and  ${}^{3}D_{2}$  $\Rightarrow \sim 40\ 000\ enhancement$
- some nuclei strongly deformed
   ⇒ nuclear enhancement 50~1000 (?is Schiff operator correct?)
- <sup>3</sup>D: electron spins parallel
- $\Rightarrow$  electron EDM
- <sup>1</sup>S : electron Spins anti-parallel
- $\Rightarrow$  atomic / nuclear EDM

For <sup>225</sup>Ra, we get

 $\langle S_z \rangle_{\rm Ra} = -1.90 \ g\bar{g}_0 + 6.31 \ g\bar{g}_1 - 3.80 \ g\bar{g}_2 \ ({\rm e \ fm}^3)$ 

The best calculation in <sup>199</sup>Hg (RPA polarization of a spherical even-even core) by Dmitriev and Sen'kov gives

 $\langle S_z \rangle_{\rm Hg} = 0.0004 \ g\bar{g}_0 + 0.055 \ g\bar{g}_1 + 0.009 \ g\bar{g}_2 \ ({\rm e \ fm}^3)$ 

If the three  $\bar{g}$ 's are comparable, the Schiff moment in Ra is larger by over 100, on average.

Dzuba et al. [PRA66, 012111 (2002)] find further enhancement of the Ra EDM by a factor of 3 in the atomic physics.



from: J. Engel

## **Laser Cooling Chart**



## **Colloing & Trapping of Heavy Alkali Earth: Ra**



Preliminary Transition Rates as calculated by K. Pachucky (also by V. Dzuba et al.)

L. Willmann

### **First time Laser Cooling of Barium**





Radium slower and tran



#### Laser-Trapping of Radium Atoms

- World's first laser trap of radium atoms: both <sup>225</sup>Ra and <sup>226</sup>Ra atoms are cooled and trapped!
- Key <sup>225</sup>Ra frequencies, lifetimes measured.

R. Holt, Argonne @ Lepton Moments 2006:

#### Search for a Nuclear EDM with Trapped Radium Atoms

Irshad Ahmad, Roy J. Holt, Zheng-Tian Lu, Elaine C. Schulte Physics Division, Argonne National Laboratory



# New Experimental Approaches

#### Molecules

- strong Enhancement through internal fields
- YbF, PbO
- Radioactive Atoms
  - fortunate atomic level scheme in Radium
  - nuclear enhancement through deformations
- Charged particles
  - Schiff Theorem circumvented in non-trivial geometry
  - novel idea to exploit motional electric fields in storage rings
  - muon, nuclei, deuteron, molecules (ThF<sup>+</sup>)
- Condensed matter
  - alkali atoms in solid He
  - neutrons in superfluid He
  - magnetization in paramagnetic material
  - liquid Xe
- Atoms using novel ideas
  - Xe with "nuclear maser"
  - Rb, Cs in optical lattices

# The Nuon Nagnetic Anomaly



Spin precession in (electro-) magnetic field

 $\vec{\omega} = \frac{e}{m} \left[ a_{\mu} \vec{B} \right]$ 



# **Nagnetic and Electric Dipole Noment are Real and Imaginary part of a more general Dipole Noment**

$$\mathcal{L}_{\rm DM} = \frac{1}{2} \left[ D\bar{\mu}\sigma^{\alpha\beta} \frac{1+\gamma_5}{2} + D^*\bar{\mu}\sigma^{\alpha\beta} \frac{1-\gamma_5}{2} \right] \mu F_{\alpha\beta} \qquad \qquad \sigma^{\alpha\beta} = \frac{1}{2} \left[ \gamma^{\alpha}, \gamma^{\beta} \right]$$

$$\begin{array}{lcl} a_{\mu} \frac{e}{2m_{\mu}} & = & \Re D \\ d_{\mu} & = & \Im D \end{array}$$

$$d^{NP}_{\mu} = 3 \cdot 10^{-22} \cdot \left(\frac{a^{NP}_{\mu}}{3 \cdot 10^{-9}}\right) \cdot \tan \phi_{CP} \ e \ cm$$

# The Nuon Hectric Dipole Noment



# The Muon Hectric Dipole Noment







Searches for EDMs in charged particles: Novel Method invented Motional Electric Fields exploited



International Collaboration (USA, Russia, Japan, Italy, Germany, NL, ...)

- possible sites discussed: BNL, KVI, Frascati, ...
- Limit  $d_D < 10^{-27} \dots 10^{-29} e cm$

 Can be >10 times more sensitive than neutron d<sub>n</sub>, best test for Θ<sub>OCD</sub>, ...

Various technical realizations being discussed.

## Some Candidate Nuclei for EDM in Ring Searches

| Nucleus                         | Spin J | $\mu/\mu_N$ | Reduced<br>Anomaly<br>a | T <sub>1/2</sub> |
|---------------------------------|--------|-------------|-------------------------|------------------|
| <sup>139</sup> 57La             | 7/2    | +2.789      | -0.0305                 |                  |
| $^{123}551}$ Sb                 | 7/2    | 2.550       | -0.1215                 |                  |
| $^{137}55}$ Cs                  | 7/2    | +2.8413     | 0.0119                  | 30y              |
| $^{223}_{87}$ Fr                | 3/2    | +1.17       | < 0.02                  | 22 min           |
| <sup>6</sup> <sub>3</sub> Li    | 1      | +0.8220     | -0.1779                 |                  |
| $^{2}$ <sub>1</sub> H           | 1      | +0.8574     | -0.1426                 |                  |
| $^{75}_{32}$ Ge                 | 1/2    | +0.510      | +0.195                  | 82.8 m           |
| <sup>157</sup> <sub>69</sub> Tm | 1/2    | +0.476      | 0.083                   | 3.6 m            |

More complete lists: I.B. Khriplovich, K. Jungmann GSI EDM Workshop, 1999

- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering

#### Time Reversal and CP-Violation

- Electric Dipole Moments
- R and D Coefficients in β-Decay

#### CPT Invariance

#### **TRIMP New Interactions in Nuclear** $\beta$ -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T





**R** and **D** test both **Time Reversal Violation** 

- $D \rightarrow most potential$
- $\mathbf{R} \rightarrow \text{scalar and tensor}$  (EDM, *a*)
- technique D measurements yield a, A, b, B

# **TRIMP** New Interactions in Nuclear $\beta$ -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T







- Parity
  - Parity Nonconservation in Atoms
  - Nuclear Anapole Moments
  - Parity Violation in Electron-Scattering
- Time Reversal and CP-Violation
  - Electric Dipole Moments
  - R and D Coefficients in β-Decay

### CPT Invariance

## CPT

- Lorentz Invariance, preferred reference frame
- Particle Antiparticle properties
- Spin
- Fermions and Bosons only
- • • •

### **CPT** – Violation Lorentz Invariance Violation

What is best CPT test ?

often quoted:

- K<sup>0</sup>- K<sup>0</sup> mass difference (10<sup>-18</sup>)
- e<sup>-</sup> e<sup>+</sup> g- factors (2\* 10<sup>-12</sup>)
- We need an interaction with a finite strength ! New Ansatz (Kostelecky)

| • K | <b>≈ 10</b> <sup>-21</sup> | GeV |
|-----|----------------------------|-----|
|-----|----------------------------|-----|

- n ≈ 10<sup>-30</sup> GeV
- p ≈ 10<sup>-24</sup> GeV
- e  $\approx 10^{-27}$  GeV

• μ ≈ 10<sup>-23</sup> GeV

• Future: Anti hydrogen ≈ 10<sup>-??</sup> GeV



## **CPT and Lorentz Invariance from Muon Experiments**

![](_page_57_Figure_1.jpeg)

V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

Muonium: new interaction below

2\*10-23 GeV

Muon g-2:

new interaction below

3\* 10<sup>-22</sup> GeV (CERN&BNL combined)

order of magnitude better expected from BNL when analysis will be completed (2006)

![](_page_58_Picture_0.jpeg)

## **Summing up**

# **EDM Searches**

*e*,μ,τ

Many objects need to be tested

 $\rightarrow$  need "e\*cm free" guidance by theory

- Systems under observation:
  - "point" particles
  - nucleons
  - Nuclei
  - Atoms
  - Molecules
- Methods

n, p <sup>2</sup>H, <sup>223</sup>Fr, ... Xe, Tl, Cs, Hg, Rn, Ra, ... PbO, YbF, TlF, ThF<sup>+</sup>, ...

- Classical (Cells, Atomic & Molecular Beams)
- Modern (Traps, Fountains, Interferences)
- Innovative (Radioactive Species, Storage Rings,

{Particles} in Condensed Matter, "masers", ...)

### There are many promising approaches to the questions:

- Is there any EDM?
- And what is the Source for an EDM?

# Conclusions

- Large number of Possibilities
  - Find Physics beyond Standard Theory
  - EDM searches offer a particular nice way at low energies
  - HE CP-violation searches and LE T-violation searches complementary
- Urgent issues to be solved in Theory and Experiment
  - Spectroscopic Groundwork
  - Schiff Moments
  - Relation to other approaches towards T-violation
- **We need NOT one EDM experiment BUT MANY**
- Novel Approaches promise Significant Progress towards
  - finding New Physics
  - limiting Parameters in Speculative Models

Let's just do it **N** 

**Thank YOU !**