Recent results on Vus from KLOE, KTeV and NA48

Venelin Kozhuharov

University of Sofia "St. KI. Ohridski"/ JINR Dubna

Heavy Quarks and Leptons 2006
19.10.2006

Overview

- CKM matrix
- Extraction of Vus
- Results
- Conclusion

CKM matrix

- Connects the weak interactions eigenstates with the quark flavour eigenstates

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V u d & V u s & V u b \\
V c d & V c s & V \boldsymbol{b} b \\
\boldsymbol{V t d} & V t s & V t b
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

- The oldest known element: Vus - Cabibbo angle
- In the absence of new physics (fourth generation) the matrix is unitary

CKM matrix: Unitarity

- First raw: $|V u d|^{2}+|V u s|^{2}+|V u b|^{2}=1+\delta$
- PDG 2004 data
- Vud = 0.9738(5)
from super-allowed 0+ -> 0+ nuclear transitions
$-\mathrm{Vus}=0.2195(25)$
from KI3 decays
$-\mathrm{Vub}=0.00367(47)$
negligible contribution to the unitarity relatio

$$
\delta=(3.5 \pm 1.5)^{*} 10^{-3}
$$

with uncertainty from Vus of 0.0010

- More information desirable

Determination of Vus: KI3

- $\operatorname{Br}(\operatorname{Ke} 3(\gamma))$ - the experimentally measured branching
- τ_{k} - kaon lifetime
- $C^{2}=1$ for K_{L} and $C^{2}=1 / 2$ for $K^{ \pm}$
- I_{K} - mode and form-factor dependent phase space integrals
$-f_{+}{ }^{K \pi}(0)$ form factor value at $\mathbf{t}=0$
- $\mathrm{S}_{\mathrm{EW}}, \delta_{\mathrm{K}}{ }^{\prime}, \delta_{\mathrm{SU} 2}$ - short- and long- distance radiative corrections and SU2 breaking corrections

Determination of Vus

- Ratio of kaon and pion leptonic decays

where

- $f \pi$ and f_{k} are the pion and the kaon decay constants
$-\delta_{E M}=0.0070 \pm 0.0035-$ arrising from the radiative corrections
- Hyperon semileptonic decays
- Analogous to the kaon semileptonic decays
- Discussed in details in the talk of Rainer Wanke

Experiments

- The interplay between three experiments in the last years contributed to the measurement of Vas and the understanding of the CKM unitarity

Kaon decays in flight
K^{0} and $K^{ \pm}$
NA48

Liquid krypton calorimeter
Hodoscope
Drift chamber 4
Anti counter 7

Drift chamber 3

SLOE
 SLOE

Tagged kaons from ϕ decays
K^{0} and $K^{ \pm}$

MUON FILTERS \qquad Drift chamber 2 Anti counter 8

KTEV

Kaon decays in flight
Only K^{0}

Kaon lifetime

- KL lifetime - two new measurements by KLOE
- Measurement using $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays
- Measurement using all main decay modes

PDG2004	51.5 ± 0.4
KLOE KL branchings	50.72 ± 0.37
KLOE -3 pi0	50.92 ± 0.30

Kaon lifetime

- KS lifetime:
- Most precise measurements by NA48 and KTeV - already existing in 2004
- Using the PDG value $-\tau_{\mathrm{s}}=0.8958(5){ }^{*} 10^{-10} \mathrm{~s}$
- K+- lifetime

Discrepancies between the different measurements

Preliminary result by KLOE presented at Moriond-2006: $\tau_{K \pm}=(1.2336 \pm 0.0078) * 10^{-8} \mathrm{~S}$
waiting for a final result
Using the PDG result

Form factor measurements

- Parametrizations: $f_{+(t)}=f_{+(0)}\left(1+\lambda^{\prime} \frac{t}{m_{\pi}^{2}}+\frac{\lambda^{\prime \prime}}{2} \frac{t}{m_{\pi}^{2}}\right)=f_{+(0)}\left(\frac{M_{V}^{2}}{M_{V}^{2}-t}\right)$
- Using $5.6^{*} 10^{6}$ events NA48 has performed a measurement of the KLe3 form-factors

Data - MC comparison for $\lambda+=0.0288$ and no quadratic term

- The analysis doesn't show evidence for the presence of quadratic term
- This result was in contradiction with the measurement of KTeV

Form factor measurements

- The phase space integrals depend on the parametrization of the form-factors

KLe3 form factors	$\lambda^{\prime}+$	$\lambda^{\prime \prime}+$	Mass the pole [MeV]
NA48 -2004	0.0280 ± 0.0024	0.0004 ± 0.0009	859 ± 18
KTeV -2004	0.02167 ± 0.0020	0.0029 ± 0.0008	881 ± 7.1
KLOE -2006	0.0255 ± 0.0018	0.0014 ± 0.0008	870 ± 9.2

- The recent measurements from KLOE are closer to the NA48 results

Phase space integirals

- The phase space integrals depend on the parametrization of the form-factors. Different values for the form factors give different values for the phase space integrals for $\mathrm{K}^{0} \mathrm{e} 3$
- Using new calculations by KTeV collaboration diminish the model dependency:

$$
I_{\text {коез }}=0.10262(32)
$$

- Between the pole parametrization from KLOE ($\left.I_{\text {коез }}=\mathbf{0 . 1 0 3 2 (2)}\right)$ and linear from NA48 ($\left.I_{\text {коез }}=\mathbf{0 . 1 0 3 4 (6)}\right)$ and quadratic from KTeV $\left(I_{\text {кое }}=\right.$ 0.1023(7)
- $\mathrm{K}^{0} \mu 3$: using the KTeV quadratic form-factor parametrization

$$
I_{\text {конз }}=0.06777(53)
$$

- $K^{ \pm} e 3$: using ISTRA form factor measurements $I_{K \pm e 3}=0.1061(8)$

Theoretical inputs

- First estimate of $f+(0)$ done by Leutwyler and Roos in 84

$$
f_{+}^{\chi 0 \pi-}(0)=(0.961 \pm 0.008) \quad f_{+}^{K+\pi 0}(0) \equiv 1.022 * f_{+}^{K 0 \pi-}(0)
$$

- New estimation within χ PT at the order of p^{6} give higher values (J. Bijnens, P. Talavera and V.Cirigliano)

$$
f_{+}^{K 0 \pi-}(0)=(0.974 \pm 0.012)
$$

- Latice QCD result is consistent with the "classical" estimation

$$
f_{+}^{K 0 \pi+}(0)=(0.960 \pm 0.009)
$$

- More information on that topic is definitely desirable
- $S_{E W}=1.023$ - Short distance EW corrections calculated by Marciano\&Sirlin
- $\delta_{\mathrm{su} 2}=0.046 \pm 0.004$ - by Cirigliano et.al and Leutwyler and Roos

NA48: KLe3 branching fraction

- Method: normalizing to all two track events

$$
R_{e}=\frac{\operatorname{Br}\left(K_{e 3}\right)}{\operatorname{Br}(K \rightarrow 2-t r a c k s)}, \quad \operatorname{Br}\left(K_{e 3}\right)=R_{e}\left[1.0048-\operatorname{Br}\left(K_{3 \pi^{0}}\right)\right]
$$

- External input: $\operatorname{Br}(\mathrm{K} 3 \pi \mathrm{O})=\mathbf{0 . 1 9 6 9} \pm \mathbf{0 . 0 0 2 6}$
- The onlv different criteria for selecting

Ke3 evens: e-PID

NA48/2: K² 3 branching fraction

- Measuring $\operatorname{Br}\left(K^{ \pm} \rightarrow \pi^{0} \mathbf{e} v\right) / \operatorname{Br}\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)$
- Preliminary result:

$$
\operatorname{Br}\left(\mathrm{K}^{ \pm} \rightarrow \pi^{0} \mathrm{eV}\right)=\left(5.14 \pm 0.02_{\text {stat }} \pm 0.06_{\text {syst }}\right) \%
$$

- Confirms the deviation from PDG observed by BNL

> Preliminary result for $K^{ \pm} \rightarrow \pi^{0} \mu \nu$
> $\operatorname{Br}\left(K^{ \pm} \rightarrow \pi^{0} \mu \nu\right)=(3.462 \pm 0.071) \%$

Final results on the $\operatorname{Br}\left(K^{ \pm} \rightarrow \pi^{0} \mathrm{ev}\right)$ and $\operatorname{Br}\left(K^{ \pm} \rightarrow \pi^{0} \mu \nu\right)$ expected soon

K 13 Branching Fractions: KTeV

- Measure all six largest decay modes in terms of five branching fractions:

$$
\begin{aligned}
& \Gamma_{\text {кн3 }} / \Gamma_{\text {кез }} \equiv \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu v\right) / \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev}\right) \\
& \Gamma_{+-0} / \Gamma_{\text {Ke3 }} \equiv \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev}\right) \\
& \Gamma_{\text {оо0 }} / \Gamma_{\text {кез }} \equiv \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right) / \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev}\right) \\
& \Gamma_{+} / \Gamma_{\text {кез }} \equiv \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{e} v\right) \\
& \Gamma_{00} / \Gamma_{000} \equiv \Gamma\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)
\end{aligned}
$$

- Using the constraint that the remaining width is only 0.03% to convert into branchings

$$
\operatorname{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi e \mathrm{v}\right)=0.4067 \pm 0.0011
$$

$$
\operatorname{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu \nu\right)=0.2701 \pm 0.0009
$$

KLI3 Branching Fractions: KTeV

Data - MC comparisons

Kl3 Branching Fractions: KLOE

Measured all major KL decay modes

$p_{\text {miss }}-E_{\text {miss }}$ in $\pi \mu$ or $\mu \pi$ hyp. (MeV)
$\operatorname{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev}\right)=0.4007 \pm 0.0015$
$\operatorname{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu \nu\right)=0.2698 \pm 0.0015$

Used tagged Ks events

Preliminary results for the charged semileptonic decays

$$
\begin{aligned}
& \operatorname{BR}\left(\mathbb{K}^{ \pm} \rightarrow \pi^{0} e v\right)=(5.047 \pm 0.043) * 10^{-2} \\
& \operatorname{BR}\left(\mathrm{~K}^{ \pm} \rightarrow \pi^{0} \mu v\right)=(3.310 \pm 0.048) * 10^{-2}
\end{aligned}
$$

Kaon semileptonic decays: Summary

Experiment	Decay	Result	
KLOE	K_{L} e3	0.4007 ± 0.0015	$\begin{aligned} & \mathrm{K}_{\mathrm{L}} \text { lifetime } \\ & (5.10 \pm 0.02) * 10^{-8} \mathrm{~S} \end{aligned}$
	$\mathrm{K}_{\underline{L}}{ }^{\text {3 }}$	0.2698 ± 0.0015	
	K_{s} e3	$(7.046 \pm 0.091) * 10^{-2}$	$\begin{aligned} & \mathrm{K}_{\mathrm{s}} \text { lifetime } \\ & (0.8958 \pm 0.0005) * 10^{-10} \mathrm{~S} \end{aligned}$
	$\mathrm{K}^{ \pm} \mathrm{e} 3$	$(5.047 \pm 0.043) * 10^{-2}$	
	$K^{\ddagger}+3$	$(3.310 \pm 0.048) * 10^{-2}$	
KTeV	K_{2} e3	0.4067 ± 0.0011	$\begin{aligned} & \mathrm{K}^{ \pm} \text {lifetime } \\ & (1.2385 \pm 0.0024) * 10^{-8} \mathrm{~s} \end{aligned}$
	$\mathrm{K}_{4}{ }^{\text {3 }}$	0.2701 ± 0.0009	
NA48	K_{2} e3	0.4022 ± 0.0031	
	$\mathrm{K}^{\ddagger} \mathrm{e} 3$	$(5.14 \pm 0.06) * 10^{-2}$	
	$K^{\ddagger} \mu 3$	$(3.462 \pm 0.071) * 10^{-2}$	

Putting the things together

$B R\left(K_{S} e 3\right)=(7.046 \pm 0.091) * 10^{-2}$

Vus from kaon semileptonic decays

$$
\begin{aligned}
& \text { Average: } 0.21632 \pm 0.00035 \\
& \hline
\end{aligned}
$$

Vus from Ku2 decay

- New result from KLOE for the $\operatorname{Br}(\mathrm{K} \mu 2)$

$$
\operatorname{Br}(\mathrm{K} \mu 2(\gamma))=0.6366 \pm 0.0009_{\text {stat }} \pm 0.0015_{\text {syst }}
$$

- Latice calculations give

$$
\begin{aligned}
& \left.\boldsymbol{f}_{\mathrm{K}} / \boldsymbol{f}_{\boldsymbol{\pi}}=1.198(3)\right)_{\left(+16{ }_{-5}\right)} \quad(\text { MILC Coll. PoS (LAT 2005) 025,2005) }
\end{aligned}
$$

\mid Vus $|/|$ Vud $\mid=0.2294 \pm 0.0026$
\mid Vus $\mid=0.2234 \pm 0.0026$
consistent with the results from K13

Conclusion

- NA48, KTeV and KLOE experiments continue to provide a valuable data
- Vus has been obtained using two different methods giving consistent values

$$
\mid \text { Vus } \mid=0.2245 \pm 0.0015
$$

- The value of Vus is consistent with unitarity of CKM matrix
- However more clarification on the KI3 form factors desirable
- Further improvement on the Vus measurement depends on the theory

