Phi3/gamma

Hitoshi Yamamoto Tohoku University

Contents

 $\blacksquare B \rightarrow D^{(*)}K^{(*)}: \phi_3 / \gamma$

- $D_{CP}^{(*)}K^{(*)}(GLW \text{ `method'})$
- $D_{DCS}^{(*)}K^{(*)}(ADS \text{ `method'})$
- $D_{K_s \pi \pi}^{(*)} K^{(*)}$ (Dalitz Analysis)

 $\blacksquare B \rightarrow D^{(*)} \pi^{(*)} : (2\phi_1 + \phi_3) / (2\beta + \gamma)$

 $(\pi^* = \rho)$

- Flavor-tagged time-dependent analyses
- Full and partial reconstructions

$B^- \rightarrow DK^-$ Diagrams

$B^- \rightarrow D_{cp}K^-(cp = \pm)$

- Oft-used observables
 - Direct CPV between B⁻ and B⁺:

$$A_{\pm} = \frac{\Gamma(D_{\pm}K^{-}) - \Gamma(D_{\pm}K^{+})}{\Gamma(D_{\pm}K^{-}) + \Gamma(D_{\pm}K^{+})} = \frac{\pm 2r \sin\varphi_{3} \sin\delta}{R_{\pm}}$$

 $\delta: \text{ strong phase between } A(D^{0}K^{-}) \text{ and } A(\overline{D}^{0}K^{-})$

• CP=+ or – decay rate averaged over B^{\pm} , in unit of favored rate.

$$R_{\pm} = 2 \frac{\Gamma(D_{\pm}K^{-}) + \Gamma(D_{\pm}K^{+})}{\Gamma(D^{0}K^{-}) + \Gamma(\overline{D}^{0}K^{+})} = 1 + r^{2} \pm 2r\cos\varphi_{3}\cos\delta$$

 $(R_{+} + R_{-})/2 = 1 + r^{2} \sim 1 (r^{2} \sim 0.01)$

Not sensitive to r.

Correction due to DCS same order.

BaBar 253M B[±] (PRD 73, 051105(R) 2006)

- DK modes
- D decays used
 - Favored: $K^-\pi^+$
 - CP+ : $K^+K^-, \pi^+\pi^-$
 - CP-: $K_{\rm S} \pi^0/\omega/\phi$
- Fit ΔE and PID
 - $A_{+} = 0.35 \pm 0.13 \pm 0.04$ $A_{-} = -0.06 \pm 0.13 \pm 0.04$ $R_{+} = 0.90 \pm 0.12 \pm 0.04$ $R_{-} = 0.86 \pm 0.10 \pm 0.05$

Belle 232M B[±] (PRD 73, 051106(R) 2006)

DK modes $A_{+} = 0.06 \pm 0.14 \pm 0.05$ $A_{-} = -0.12 \pm 0.14 \pm 0.05$ $R_{+} = 1.13 \pm 0.16 \pm 0.05$ $R_{-} = 1.17 \pm 0.14 \pm 0.05$

D*K modes $A_{+} = -0.20 \pm 0.22 \pm 0.04$ $A_{-} = 0.13 \pm 0.30 \pm 0.08$ $R_{+} = 1.41 \pm 0.25 \pm 0.06$ $R_{-} = 1.15 \pm 0.31 \pm 0.12$

 R_{cp} deviation from 1 opposite for CP+/-

A_{cp} opposite sign for CP+/-

More statistics needed for the CPV to be seen

■ GLW method (original)

• Measure 4 quantities for given CP $\begin{vmatrix} A(D_{CP}K^{-}) \\ A(D^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{-}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \\ A(\overline{D}^{0}K^{+}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+}) \end{vmatrix} = \begin{vmatrix} A(D^{0}K^{+})$

• Construct two triangles $\rightarrow \phi_3 / \gamma$

Problem :

- Difficult to measure the suppressed modes due to D⁰ DCSD
- ADS noticed that there is a large CPV effect in DCSD modes

ADS method

- Measure at least 4 modes including 'DCSD' modes (two types)
 - E.g. $(K^+\pi^-)K^-$, $(K^+K^-)K^-$ and conjugates
- Solve for $r, \phi_3, \delta_1, \delta_2$.

ADS Modes ('DCSD' modes)

D decays that are flavor-specific and 'suppressed' ('DCSD')

Statistics not enough yet to perform the ADS analysis.

• For now, measure the suppressed mode Br.

$$R_{ADS} = \frac{(K^{+}\pi^{-})K^{-} + (K^{-}\pi^{+})K^{+}}{(K^{-}\pi^{+})K^{-} + (K^{+}\pi^{-})K^{+}} \sim r^{2} + r_{D}^{2} + 2rr_{D}\cos(\delta - \delta_{D})\cos\varphi_{3}$$

• Get DCSD factor r_D from D analysis \rightarrow sensitivity to r

ADS Mode : Belle Results

386M B[±]

ADS Mode : Babar Results

232M B[±]

	R _{ADS}	r
DK	<0.029	<0.23
D*K	<0.023 (D ⁰ π^{0}) <0.045 (D ⁰ γ)	<0.16
DK*	<0.045	0.20±0.14

Still not enough to claim signal

$B^{\pm} \rightarrow DK^{\pm}, D \rightarrow K_{S} \pi^{+} \pi^{-} Dalitz$

■ Dalitz distribution (assume CP in D decay)

Asymmetry of f(x,y) under $x \Leftrightarrow y \rightarrow Sensitivity$ to r, δ, ϕ_3 .

Atwood, Dunietz, Soni, PRD 2001 (K⁺ $\pi^-\pi^0$) Bonder, BINP Mini-workshop on Dalitz analysis, Sep. 2002 Giri, Grossman, Soffer, Zupan, PRD 2003

Dalitz Amplitude

- Need to know the Dalitz amplitude $f(m_{12}^2, m_{13}^2)$
- Fit known resonances to the D⁰ sample (D*+ tag)
 - \rightarrow model dependence
 - Use Breit-Wigner form (BW)
 - BaBar : 390K samples, 16 BWs + NR, 3 are DCS.
 - Belle : 260K samples, 18 BWs + NR, 5 are DCS.
 - Different formalisms for resonances used for systematics study

	~		
Intermediate state	Amplitude	Phase ($^{\circ}$)	Fit fraction
$K_S^0 \sigma_1$	1.43 ± 0.07	212 ± 3	9.8%
$K^0_S ho^0$	1.0 (fixed)	0 (fixed)	21.6%
$K^0_S \omega$	0.0314 ± 0.0008	110.8 ± 1.6	0.4%
$K_S^0 f_0(980)$	0.365 ± 0.006	201.9 ± 1.9	4.9%
$K_S^0 \sigma_2$	0.23 ± 0.02	237 ± 11	0.6%
$K_S^0 f_2(1270)$	1.32 ± 0.04	348 ± 2	1.5%
$K_S^0 f_0(1370)$	1.44 ± 0.10	82 ± 6	1.1%
$K_{S}^{0}\rho^{0}(1450)$	0.66 ± 0.07	9 ± 8	0.4%
$K^{*}(892)^{+}\pi^{-}$	1.644 ± 0.010	132.1 ± 0.5	61.2%
$K^{*}(892)^{-}\pi^{+}$	0.144 ± 0.004	320.3 ± 1.5	0.55%
$K^*(1410)^+\pi^-$	0.61 ± 0.06	113 ± 4	0.05%
$K^*(1410)^-\pi^+$	0.45 ± 0.04	254 ± 5	0.14%
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	353.6 ± 1.2	7.4%
$K_0^*(1430)^-\pi^+$	0.47 ± 0.04	88 ± 4	0.43%
$K_2^*(1430)^+\pi^-$	0.88 ± 0.03	318.7 ± 1.9	2.2%
$K_2^*(1430)^-\pi^+$	0.25 ± 0.02	265 ± 6	0.09%
$K^*(1680)^+\pi^-$	1.39 ± 0.27	103 ± 12	0.36%
$K^*(1680)^-\pi^+$	1.2 ± 0.2	118 ± 11	0.11%
non-resonant	3.0 ± 0.3	164 ± 5	9.7%

Belle

Dalitz : D^(*)**K**^(*)**Signals**

Belle

Fit parameters (r, δ, ϕ_3) do not behave well Fit the amplitude of the suppressed B[±] decay $x_{\pm} = \operatorname{Re}(re^{i(\delta \pm \varphi_3)}),$ $y_{\pm} = \operatorname{Im}(re^{i(\delta \pm \varphi_3)})$ 4 parameters with $\sqrt{x_{+}^{2} + y_{+}^{2}} = \sqrt{x_{-}^{2} + y_{-}^{2}}$ also $\sqrt{(x_{+} - x_{-})^{2} + (y_{+} - y_{-})^{2}} = 2r\sin\varphi_{3}$ (x+,y+)(x-,y-) $2rsin\gamma$ δ х

x-y fit results

Different r, δ for different B decays

x,y: relative – for $D^0 \gamma$ and $D^0 \pi^0$ due to parity property. (Bonder, Gershon 2004)

H. Yamamoto, HQL06 Munich

Extraction of γ : BaBar

D*K-

 $\gamma = 91 \pm 41(\text{stat}) \pm 11(\text{sys}) \pm 12^{\circ}(\text{model})$

$$r_{\rm DK} = [0, 014]$$

 $r_{\rm D^*K} = [0.02, 0.20]$

Extraction of \phi_3: Belle

$$\varphi_3 = 53^{+15}_{-18} \text{(stat)} \pm 3 \text{(sys)} \pm 9^\circ \text{(model)}$$

 $r_{DK} = 0.159^{+0.054}_{-0.050} \pm 0.012 \pm 0.049$ $r_{D^*K} = 0.175^{+0.108}_{-0.099} \pm 0.013 \pm 0.049$ $r_{DK^*} = 0.564^{+0.216}_{-0.155} \pm 0.041 \pm 0.084$

Ambiguities: • $\phi_3 \rightarrow \phi_3 + (n+m)\pi$, $\delta \rightarrow \delta + (n-m)\pi$ (n,m: any integers)

Require $0 < \phi_3 < \pi$ to Resolve ambiguity.

$D^{(*)}\pi^{(*)}$: mixing \rightarrow flavor specific

favored

B⁰ tag

$$D^{(*)} \pi^{(*)}$$

$$\Gamma_{B^{0}}(D^{\mp}\pi^{\pm};t) \propto 1 \pm \cos \Delta mt + s^{\mp} \sin \Delta mt$$

$$\Gamma_{B^{0}}(D^{\mp}\pi^{\pm};t) \propto 1 \mp \cos \Delta mt - s^{\pm} \sin \Delta mt$$

$$s^{\pm} \sim 2r \sin(2\varphi_{1} + \varphi_{3} \pm \delta)$$
Tag-side interference

$$a = 2r \sin(2\beta + \gamma) \cos \delta$$

$$s^{\pm} \rightarrow b = 2r' \sin(2\beta + \gamma) \cos \delta'$$

$$c = 2\cos(2\beta + \gamma)(r\sin\delta - r'\sin\delta')$$

Primed parameters : tag-side effects. Absent for lepton tag. \rightarrow use *a* and c_{lep} to extract $2\beta + \gamma$

dt 2 -6-4-2 4 6

D^(*)π^(*) partial-recon. BaBar

 D^0 not reconstructed. Fast and slow π 's only. Plot missing D^0 mass. High statistics More background

 $a = -0.034 \pm 0.014 \pm 0.019$ $c_{\text{lep}} = -0.025 \pm 0.020 \pm 0.013$

$D^{(*)}\pi$ full-recon. Belle

Full reconstruction of $D^+\pi^-$ and $D^{*+}\pi^-$

 $S^{+}(D^{*}\pi) = 0.049 \pm 0.020 \pm 0.011$ $S^{-}(D^{*}\pi) = 0.031 \pm 0.019 \pm 0.011$ $S^{+}(D\pi) = 0.031 \pm 0.030 \pm 0.012$ $S^{-}(D\pi) = 0.068 \pm 0.029 \pm 0.012$

392M Bpairs

(b)

0<u>1-</u> -15

0<u>≞</u> -15 (a)

D^(*)π^(*) World Averages

Deviation of a from 0 is seen

Measurement of $r(D^{(*)}\pi^{(*)})$

Br(D_S π) = (1.3±0.3±0.2)×10⁻⁵ Br(D_S* π) = (2.8±0.6±0.5)×10⁻⁵

Assume SU3 with correction for decay constants f_D, f_{Ds} :

$$r = \tan \theta_c \frac{f_D}{f_{D_s}} \sqrt{\frac{Br(B^0 \rightarrow D_s^+ \pi^-)}{Br(B^0 \rightarrow D^- \pi^+)}}$$

 $r(D \pi) = (1.3 \pm 0.2 \pm 0.1) \times 10^{-2}$ $r(D^* \pi) = (1.9 \pm 0.2 \pm 0.2) \times 10^{-2}$

Annihilation diagram in $D\pi$ is ignored. (No annihilation for $D_S\pi$, since $\#ss^-$ is odd)

BaBar

Extraction of sin $(2\beta + \gamma)$ and γ

Summary

 $\square D_{CP}K modes:$

• Clear CPV not seen yet.

■ DK ADS modes :

• Suppressed modes are not seen (some hints?).

• Constraints on *r* is obtained.

DK Dalitz analysis :

• ϕ_3 / γ error is ~20°.

• Improvement expected with more stat.

• $D^{(*)}\pi^{(*)}$ time-dependent analysis :

• Beginning to produce meaningfull result for $\sin(2\phi_1 + \phi_3)$.

• Determination of $r(D\pi)$ is an issue.