D and D_s Decays and Dalitz Analyses

David G. Cassel

Cornell University

- Absolute D^0 and D^+ Branching Fractions
- Cabibbo Suppressed D^0 and D^+ Decays
- Doubly Cabibbo Suppressed D^0 and D^+ Decays
- Absolute D_s Branching Fractions
- Inclusive D^0 , D^+ , and D_s decays to $s\bar{s}$
- Dalitz Analyses
- Summary and Conclusions

Heavy Quarks and Leptons 2006 München October 18, 2006

$e^+e^- ightarrow \psi(3770) ightarrow Dar{D}$ Events and Analyses

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^ D^+ \rightarrow K^-\pi^+\pi^+ \text{ and } D^- \rightarrow K^+\pi^-\pi^-$

- CLEO-c uses D^+ and D^0 decays from $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$ or $D^0\bar{D}^0$
 - No additional pions produced
 - Extremely clean events
- Leptonic, semileptonic, and key hadronic branching fractions measured with a double tagging technique
 - Other branching fractions measured relative to a reference mode, usually $D^0 \rightarrow K^- \pi^+$ or $D^+ \rightarrow K^- \pi^+ \pi^+$
- Absolute branching fractions for key Cabibbo Favored hadronic modes were published with 56 pb⁻¹of data.
 - **Preliminary** update with 281 pb⁻¹ reported for the first time here
- Some other branching ratios utilizing 281 pb⁻¹ already published or submitted for publication

Absolute D^0 and D^+ Hadronic Branching Fractions

Utilize technique pioneered by MARK III

- Single Tag (ST) Yields $D \to i$ and $\bar{D} \to X$ $N_i = N_{D\bar{D}} \mathcal{B}_i \epsilon_i$
- $\bullet \quad \text{Double Tag (DT) Yields} \quad D \to i \text{ and } \bar{D} \to \bar{j} \quad N_{i\bar{j}} = N_{D\bar{D}} \ \mathcal{B}_i \ \mathcal{B}_{\bar{j}} \ \epsilon_{i\bar{j}}$
 - Obtain ST and DT yields from fits to beam constrained mass distributions
 - Compute branching fractions and $N_{D\bar{D}}$

$${\cal B}_i = rac{N_{ij}}{N_{ar j}} rac{\epsilon_j}{\epsilon_{iar j}} \quad {
m and} \quad N_{Dar D} = rac{N_i N_j}{N_{iar j}} rac{\epsilon_{ij}}{\epsilon_i\epsilon_{ar j}}$$

• Do a χ^2 fit including all yields and all errors – correlated and uncorrelated. Yields from 281 pb⁻¹

- ST all modes: 230,225 D^0/\bar{D}^0
- DT all modes: $13,575 \pm 120 \ D^0 \overline{D}{}^0$

 $egin{array}{rcl} 167,\!086 & D^+/D^- \ 8,867\pm97 \ D^+D^- \end{array}$

Absolute Hadronic D^0 and D^+ Branching Fractions

CLEO-c 281 pb	⁻¹ Preliminary
Mode	B (%)
$D^0 o K^- \pi^+$	${\bf 3.87 \pm 0.04 \pm 0.08}$
$D^0 o K^- \pi^+ \pi^0$	$14.6\pm0.1\pm0.4$
$D^0 o K^- \pi^+ \pi^+ \pi^-$	$8.3\pm0.1\pm0.3$
$D^+ o K^- \pi^+ \pi^+$	$9.2\pm0.1\pm0.2$
$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	$6.0\pm0.1\pm0.2$
$D^+ o K^0_S \pi^+$	$1.55 \pm 0.02 \pm 0.05$
$D^+ o K^0_S \pi^+ \pi^0$	$7.2\pm0.1\pm0.3$
$D^+ o K^0_S \pi^+ \pi^+ \pi^-$	$3.13 \pm 0.05 \pm 0.14$
$D^+ o K^+ K^- \pi^+$	$0.93 \pm 0.02 \pm 0.03$

- Systematic errors dominate!
 - Conservative now little change from 56 pb⁻¹ results
 - Expect some improvement
- Final State Radiation included in efficiency MC
 - Without FSR in MC \mathcal{B} 's would decrease by $\leq 2\%$

Compare to PDG04 because PDG06 includes CLEO-c 56 pb^{-1} in averages

 $2\% ext{ for } \mathcal{B}(D^0 o K^- \pi^+)$

Singly-Cabibbo-Suppressed D^0 and D^+ Decays to Pions

$\rm CLEO\text{-}c \ 281 \ pb^{-1}$			
Mode	CLEO-c \mathcal{B} (10 ⁻³)	PDG04 ${\cal B}$ (10 ⁻³)	
$\pi^+\pi^-$	$1.39 \pm 0.04 \pm 0.03$	1.38 ± 0.05	
$\pi^0\pi^0$	$0.79 \pm 0.05 \pm 0.04$	$\boldsymbol{0.84 \pm 0.22}$	
$\pi^+\pi^-\pi^0$	$13.2\pm0.2\pm0.5$	11 ± 4	
$\pi^+\pi^-\pi^+\pi^-$	$7.3\pm0.1\pm0.3$	7.3 ± 0.5	
$\pi^+\pi^-\pi^0\pi^0$	$9.9\pm0.6\pm0.7$		
$\pi^+\pi^-\pi^+\pi^-\pi^0$	$4.1\pm0.5\pm0.2$		
$\pi^+\pi^0$	$1.25 \pm 0.06 \pm 0.08$	1.33 ± 0.22	
$\pi^+\pi^+\pi^-$	$3.35 \pm 0.10 \pm 0.20$	3.1 ± 0.4	
$\pi^+\pi^0\pi^0$	$4.8\pm0.3\pm0.4$		
$\pi^+\pi^+\pi^-\pi^0$	$11.6\pm0.4\pm0.7$		
$\pi^+\pi^-\pi^+\pi^-\pi^+$	$1.60 \pm 0.18 \pm 0.17$	1.82 ± 0.25	

- Reference branching fractions used (CLEO-c and PDG 2004 averages)
 - ${\cal B}(D^0 o K^- \pi^+) = (3.84 \pm 0.07)\%$
 - ${\cal B}(D^+ o K^- \pi^+ \pi^+) = (9.4 \pm 0.3)\%$

BaBar $\mathcal{B}(D^+ \to \pi^+ \pi^0)$ with DCSD $\mathcal{B}(D^+ \to K^+ \pi^0)$

Singly-Cabibbo-Suppressed D^0 and D^+ Decays to Pions

Searches for η and ω in multiplion D^0 and D^+ decays

Look for net $M(\pi^+\pi^-\pi^0)$ signals in signal and sideband regions of $\Delta E \equiv E(D) - E_{beam}$

Mode	${\cal B}~(10^{-3})$
$\eta\pi^0$	$0.62 \pm 0.14 \pm 0.05$
$\eta\pi^+$	$3.61 \pm 0.25 \pm 0.26$
$\eta\pi^+\pi^-$	< 1.9 (90% CL)
$\omega\pi^0$	< 0.26 (90% CL)
$\omega\pi^+$	< 0.34 (90% CL)
$\omega\pi^+\pi^-$	$1.7\pm0.5\pm0.2$

Isospin Amplitudes in $D \to \pi \pi$ decay

- Amplitudes A_0 and A_2 for $D \to \pi\pi$ to I = 0, 2 states
- Determine $A_2/A_0 = 0.420 \pm 0.014 \pm 0.001$ and $\delta = (86.4 \pm 2.8 \pm 3.3)^\circ$ (relative phase) from $\mathcal{B}(\pi^+\pi^-)$, $\mathcal{B}(\pi^0\pi^0)$, and $\mathcal{B}(\pi^+\pi^0)$
 - Indicates that final state interactions are important in $D \to \pi \pi$ decay

FOCUS Multi-Kaon Modes

Used reference branching fractions from PDG 06

- $\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$ for $D^0 \to K^- K^+ \pi^+ \pi^-$ decay
- $\mathcal{B}(D^0 \to \bar{K}^0 \pi^+ \pi^-)$ for all other modes

Dalitz Analysis of $D^0 \to K^- K^+ \pi^+ \pi^-$ later

Doubly-Cabibbo-Suppressed D Decays

(The CLEO-c result for $D^+ \rightarrow \pi^+ \pi^0$ is from the SCSD analysis.)

Comparison of $D \to K_S^0 \pi$ and $D \to K_L^0 \pi$ Decay Rates

Cabibbo-Favored and Doubly-Cabibbo-Suppressed amplitudes for $D \to K^0 \pi$.

- Observed final states are K_S^0 and K_L^0
- Interference between CF and DCS amplitudes can lead to different rates for $D \to K_S^0 \pi$ and $D \to K_L^0 \pi$ (Bigi and Yamamoto)
- Reconstruct $D \to K_L^0 \pi$ from missing mass

$$egin{aligned} R(D) &\equiv rac{\mathcal{B}(D o K_S^0 \pi) - \mathcal{B}(D o K_L^0 \pi)}{\mathcal{B}(D o K_S^0 \pi) + \mathcal{B}(D o K_L^0 \pi)} \ \end{array}$$

 $R(D^0)$ 0.122 \pm 0.024 \pm 0.030

- U-spin and SU(3) predict $R(D^0) = 2 \tan^2(\theta_c)$ which gives $R(D^0) = 0.109 \pm 0.001$
- $R(D^+)$ not so simple: $D^+ \to \bar{K}^0 \pi^+$ external & internal spectator $D^+ \to K^0 \pi^+$ external spectator & annihilation

D_s Production Cross Section

- Little was know about the composition of $\sigma(e^+e^-)$ above $E_{cm}=3.8~{
 m GeV}.$
- CLEO scan with $\sim 5 \text{ pb}^{-1}$ per point with fast turnaround and feedback
- More luminosity in the region around $E_{cm} = 4.17 \text{ GeV}$ where $D_s^{\pm} D_s^{*\mp}$ peaks
 - $\sigma(e^+e^- \rightarrow D_s^{\pm}D_s^{*\mp}) \approx 0.9 \text{ nb}$

Selecting $D_s^{\pm} D_s^{*\mp}$ Events

$e^+e^- ightarrow D^*_s \ D_s ightarrow D^+_s \ D^-_s \ \gamma$

Ignore the γ or π^0 from D_s^* decay Select $D_s^{\pm} D_s^{*\mp}$ events using:

- Candidate invariant mass m_{inv}
- Candidate m_{BC} (a proxy for momentum)

Analyzing $D_s^{\pm} D_s^{*\mp}$ Events

Measuring ST and DT events:

- Require $M_{bc} > 2.01 \text{ GeV}$
- Fit ST $M(D_s)$ candidate invariant mass distribution
- Cut DT in $M(D_s^-)$ vs $M(D_s^+)$ plane
 - Blue box signal
 - Red boxes sidebands

Absolute Hadronic D_s Branching Fractions

Comparison with PDG 2006

CLEO-c	Preliminary	
195 pb^{-1} of data		
D_s^+ Mode	B (%)	
$K_S K^+$	$1.50 \pm 0.09 \pm 0.05$	
$K^-K^+\pi^+$	$5.57 \pm 0.30 \pm 0.19$	
$K^-K^+\pi^+\pi^0$	$5.62 \pm 0.33 \pm 0.51$	

 $\begin{array}{ll} \pi^+\pi^+\pi^- & 1.12\pm 0.08\pm 0.05 \\ \pi^+\eta & 1.47\pm 0.12\pm 0.14 \\ \pi^+\eta' & 4.02\pm 0.27\pm 0.30 \end{array}$

Additional 130 pb^{-1} to be analyzed

Belle measures $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+)$ utilizing a partial reconstruction technique for $e^+e^- \to D_{s1}D_s^*$ events (R. Uglov ICHEP06)

		${\cal B}(D^+_s o K^- K^+ \pi^+) ~(\%)$
CLEO	Preliminary	$5.57 \pm 0.30 \pm 0.19$
Belle	Preliminary	4.1 $\pm 0.4 \pm 0.4$

Partial $D_s^+ \to K^- K^+ \pi^+$ Branching Fractions

 ${\cal B}(D^+_s o \phi \pi^+ o K^- K^+ \pi^+) ext{ is one of the largest } D_s ext{ branching fractions}$

- A branching fraction called $\mathcal{B}(D_s^+ \to \phi \pi^+)$ has often been used as a reference branching fraction for D_s decays.
 - Derived from a narrow mass cut around the ϕ peak in the $M(K^+K^-)$ distribution in $D_s^+ \to K^-K^+\pi^+$ events.
- E687 has published and FOCUS has reported significant contributions from $f_0(980)$ (or $a_0(980)$) in the $\phi\pi$ region of the $D_s^+ \to K^-K^+\pi^+$ Dalitz plot.
 - These scalar contributions $(\sim 5)\%$ under the ϕ peak in $M(K^+K^-)$ are comparable to current CLEO-c errors for $\mathcal{B}_{\Delta M} \equiv \mathcal{B}(D_s^+ \to K^-K^+\pi^+)$ with $|M(K^-K^+) - M_{\phi}| < \Delta M \text{ MeV}/c^2.$

4120706-011

1.06

K⁺K[−] mass (GeV/c²)

1.08

1.1

• PDG and HEP community need to decide how to deal with this in the future

CLEO-c Inclusive D^0 , D^+ , and D_s decays to $s\bar{s}$

Inclusive D^0, D^+ , and D_s decays to $\eta X, \, \eta' X$, and ϕX

- For these $s\bar{s}$ states larger branching fractions for D_s than for D^0 and D^+
- Fully reconstruct one D and then search for η , η' and ϕ from the other D.

Mode	${\cal B}(D^0)$ $(\%)$	${\cal B}(D^+)$ (%)	${\cal B}(D_s^+)$ (%)
ηX	$9.5\pm0.4\pm0.8$	$6.3\pm0.5\pm0.5$	$23.5\pm3.1\pm2.0$
$\eta' X$	$2.48 \pm 0.17 \pm 0.21$	$1.04 \pm 0.16 \pm 0.09$	$8.7\pm1.9\pm0.8$
ϕX	$1.05 \pm 0.08 \pm 0.07$	$1.03 \pm 0.10 \pm 0.07$	$16.1\pm1.2\pm1.1$

- Qualitative observations:
 - η' and ϕ relatively rare in D^0 and D^+ decay
 - η with lower mass and larger light quark content is produced at substantially higher rates in D^0 & D^+
 - ϕ rate higher in D_s decay than in D^0 and D^+ decay
 - can utilize higher ϕ rates to separate D_s from D^0 and D^+ at $\Upsilon(5S)$ and hadron colliders

E791 and FOCUS Dalitz Analyses of $D^+ \rightarrow \pi^+ \pi^-$ Decays

 $m^2_{\pi^+\pi^-}~({
m GeV^2}/c^4)$

FOCUS Dalitz Analysis

- Used K Matrix formalism
 - Low $m_{\pi^+\pi^-}$ peak from combination of resonances, $f_0(980),\ldots$

• Also
$$ho^0\pi^+$$
 and $f_2(1270)\pi^+$

CLEO-c Dalitz Analysis of $D^+ \to \pi^+ \pi^+ \pi^-$ Decays

CLEO-c Preliminary

Isobar model like E791

- Removed K_S^0 mass region
 - $\sigma^0\pi^+$ for low $m_{\pi^+\pi^-}$ peak
- **Preliminary** Fit Fraction results

	CLEO (%)	E791 (%)
$ ho^0\pi^+$	20.0 ± 2.5	33.6 ± 3.9
$\sigma^0\pi^+$	41.8 ± 2.9	46.3 ± 9.2
$f_2(1270)\pi^+$	18.2 ± 2.7	19.4 ± 2.5
$f_0(908)\pi^+$	$4.1 \hspace{0.1 in} \pm \hspace{0.1 in} 0.9$	6.1 \pm 1.4
$f_0(1370)\pi^+$	$2.6 \hspace{0.1in} \pm 1.9 \hspace{0.1in}$	$2.3\ \pm 1.7$
$f_0(1500)\pi^+$	$3.4 \hspace{0.1in} \pm 1.3 \hspace{0.1in}$	
Non Res	< 3.5	7.8 ± 6.6
$ ho(1450)\pi^+$	< 2.4	7.8 ± 0.6

E791 & CLEO-c general agreement Future: K-Matrix fit like FOCUS

CLEO-III Dalitz Analysis of $D^0 \to K^+ K^- \pi^0$ Decays

CKM angle $\gamma \ (\phi_3)$ can be measured in $B^{\pm} \rightarrow D^0(\bar{D}^0)K^{\pm}$ with D^0/\bar{D}^0 decaying to $K^{*+}K^-$ or $K^{*-}K^+$

- Need relative complex amplitude for $\bar{D}^0 \to K^{*+}K^-$ and $D^0 \to K^{*+}K^-$
- Same as relative complex amplitude $r_D e^{i\phi_D}$ for $D^0 \to K^{*-}K^+$ and $D^0 \to K^{*+}K^-$ (assuming *CP* conservation in these decays)
- CLEO finds:
 - $r_D = 0.52 \pm 0.05 \pm 0.04$
 - $\phi_D = 332^\circ \pm 8^\circ \pm 11^\circ$

Projected fits

Both fit data with isobar models

BaBar fit 17 two-body states

Belle fit 18 two-body states Four states with Fit Fraction $\geq 10\%$

FOCUS Dalitz Analysis of $D^0 \to K^+ K^- \pi^+ \pi^-$ Decays

Multiple Dalitz Plots from four-body decay

Summary and Conclusions

Advances in precision and discovery reach with BaBar, Belle, and CLEO-c

- Absolute *D* hadronic branching fractions from charm threshold CLEO-c
 - 281 pb⁻¹ Preliminary results for D^0 and D^+ limited by systematic errors
 - CF decay errors as low as $\lesssim 3\%$
 - Now Final State Radiation must be considered; effects $\leq 2\%$
 - Interesting problem for the PDG
 - 195 pb⁻¹ Preliminary results for D_s limited by statistics
 - CF decay errors as low as $\lesssim 10\%$
 - Scalar K^+K^- contribution becoming significant in measurements of $\mathcal{B}(D_s \to K^-K^+\pi^+)$ with $M(K^+K^-)$ cut around the ϕ peak
 - Need to define new reference branching fraction for D_s decays
- Many accurate branching ratio measurements from BaBar, Belle, and CLEO-c
 - BaBar and Belle are starting to dominate branching ratio measurements
- Dalitz analyses of $D^+ \to \pi^+ \pi^+ \pi^-$, $D^0 \to K^+ K^- \pi^0$, and $D \to K_S^0 \pi^+ \pi^-$ decays, and three-body sub-modes from $D^0 \to K^+ K^- \pi^+ \pi^-$ decays
 - Dalitz analyses of $D \to K_S^0 \pi^+ \pi^-$ with huge statistics are byproducts of BaBar and Belle measurements of γ or ϕ_3
 - Expect BaBar and Belle to dominate future Dalitz D decay analyses
- Renaissance of hadronic *D* physics coming from CLEO-c at the charm threshold and BaBar and Belle at the beauty threshold!