The NA48/3 experiment at CERN (proposal P-326)

Giuseppe Ruggiero (CERN) "Heavy quark & Leptons 2006" Munich, 18/10/2006

Rare Kaon Decays and CKM matrix

• $K \rightarrow \pi v \bar{v}$ decay is sensitive to V_{td}

- $|V_{td}|$ determination independent on B⁰-B⁰ mixing
- Theoretically the <u>cleanest</u> processes in K and B physics

- Standard Model predictions
 - $BR(K^+ \to \pi^+ \nu \bar{\nu}) \approx (1.6 \times 10^{-5}) |V_{cb}|^4 [\sigma \eta^2 + (\rho_c \rho)^2] \rightarrow (8.0 \pm 1.1) \times 10^{-11}$
 - $BR(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}) \approx (7.6 \times 10^{-5}) |V_{cb}|^{4} \eta^{2} \rightarrow (3.0 \pm 0.6) \times 10^{-11}$ 8

MFV: Sensitivity to Z⁰ Penguin from Bobeth et a. (2005)

Proposal to Measure the Rare Decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the CERN SPS (NA48/3 – P326)

CERN-SPSC-2005-013 SPSC-P-326

CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Protvino, Pisa, Rome, Saclay, San Luis Potosi, Sofia, Turin Located in the same hall of NA48

Schedule

- Presented at CERN SPSC in September 2005
- R&D endorsed by CERN Research Board on December 2005
- Test beams in October November 2006
- Test beam for RICH in 2007
- Aims to complete the R&D by the end of 2007
- Start of data taking 2011

NA48/3 guidance principles

~80 K⁺ $\rightarrow \pi^+\nu\nu$ events

- **BR(SM) = 8 \times 10^{-11}**
- Signal acceptance 10%
- K decays ~10¹³

- Kaon decay in flight technique
- Intense proton beam from SPS
- High energy K ($P_K = 75 \text{ GeV/c}$)
- Cerenkov counter for kaon ID

Low Level of background

Vetoes & Particle ID

- Kaon: Beam Tracker
- <u>Pion:</u> Spectrometer
- Calorimeter for γ/μ detection
- RICH (π/μ separation)
 - Spectrometer for charged particle . rejection

Backgrounds Kinematically constrained Not kinematically constrained $K^+ \rightarrow \pi^+ \pi^0$

Arbitrary Units

-0.15

0.1 0.1 m²_{miss} GeV²/c⁴

0.15

Kaon decays / year = 4.8 × 10¹²

Giu

Kaon ID

Cerenkov counter on the beam

Requirements

- Tag the kaon to keep the beam background under control
- Good time resolution
- Minimal material budget

Existing detector: CEDAR Filled with H₂ instead of Ne

R&D program

 November 2006: test of a not modified CEDAR detector on the H8 beam line @ CERN

Beam tracker

<u>Si pixel stations across the 2nd achromat</u>: size 36 mm (X)× 48 mm (Y)
 Rate: 800 MHz (charged particles) ~50MHz/cm²

Requirements

- Good space resolution not to spoil the downstream tracker resolution
- Low X/X₀ not to spoil the beam
- Excellent time resolution needed for K+/π+ association: σ(t)~200 ps per station

> 300×300 μ m pixels $\begin{pmatrix} \sigma(P_K)/P_K \sim 0.4\% \\ \sigma(\theta_K) \sim 16 \mu rad \end{pmatrix}$

200 Si µm sensor+ 100 Si µm chip

Complex readout chip bump-bonded on the sensor (0.13 µm CMOS technology)

R&D program

- First sensor prototypes
- Radiation tests started
- Chip design under study
- Cooling and technical implementation design in progress

Spectrometer

<u>6 chambers with 4 double layers of straw tubes each (Ø 9.6 mm)</u>
Rate: ~45 KHz per tube (max 0.5 MHz) (μ+π)

Spectrometer

Tube characteristics

- Tube of mylar (36 μm)
- D = 1 cm, L = 2.1 m
- Gas CF_4 - CO_2 -iso C_4H_{10}

R&D program

- Tests on gas leakage
- Tests on tube expansion in vacuum
- Prototype under construction at Dubna (2007).

RICH (I)

Requirements

- >3σ pion/muon separation @ 35 GeV/c
- Time resolution 100 ps
- Velocity spectrometer (redundancy)

18 m tube filled with Ne @ 1 atm

(13 GeV/c threshold for pions)

Optics and photo detector

- 2 tilted mirrors (17 m focal lenght)
- 2000 PMT
- Pixel size 18 mm
- Single anode PMTs matrix on the focal plane with compact hex packing

RICH (II)

R&D program (2007)

- Build a full scale (longitudinal) prototype
- One mirror: f=17 m, 1 cm thick
- Vessel in stainless steel
- 32 PMT Hamamatsu in 8 spots
- Test on SPS K12 (NA48) beamline

Check Cherenkov angle resolution Check number of photoelectrons Check time resolution

Photon vetoes layout

Large angle: 13 ANTIs (10 < acceptance < 50 mrad)
 Medium angle: NA48 LKr (1 < acceptance < 10 mrad)
 Small angle: IRC1,2 SAC (acceptance < 1 mrad)

Large angle veto

<u>13 ring em calorimeter placed in vacuum</u>
Rate ~4 MHz (μ)+~0.5 MHz (γ) (OR of 13)

Requirements

- 10^{-4} inefficiency for E_{γ} in 0.05,1 GeV
- 10^{-5} inefficiency for $E_{\gamma} > 1 \text{ GeV}$

R&D program

- Lead scintillator tiles read out by WLS fibers
 - Inefficiency measurement at the e- beam of LNF in progress.
 - Out-gassing studies performed at CERN proved that the scintillator can be placed in the same vacuum of the decay region.

Structure with lead and scintillating fibers

- Prototype under construction at LNF
- Test planned on the γ-tagged beam facility at LNF

Medium angle veto: the NA48 LKr calorimete

Existing NA48 electromagnetic calorimeter at liquid Kripton
Rate ~7 MHz (μ) + ~4 MHz (γ)+~3 MHz (π)

Requirements

- 10^{-4} inefficiency for E_{γ} in 1,5 GeV
- 10^{-5} inefficiency for $E_{\gamma} > 5 \text{ GeV}$

R&D program

- Inefficiency @ $E_{\gamma} > 10$ GeV measured with data using K⁺ $\rightarrow \pi^{+}\pi^{0}$ events: Result: $\eta < 10^{-5}$ (preliminary)
- Test with a photon tagged beam at CERN in October 2006 to measure the inefficiency at energies < 10 GeV
- Consolidation of the readout in progress

The 2006 test run for LKr

- Bremsstrahlung photon produced using electron from CERN SPS
- NA48 setup to detect the photons on the LKr

Small angle veto

Calorimeter shashlyk placed on the beam axis

Requirements

10-5 inefficiency (high energy photons)

R&D program

- Prototype built by Dubna & Sofia groups
- Lead plane + fibers, 18 X/X_0
- Tested on 15-16 October with the 25 GeV SPS electron beam using the NA48 setup

Muon Veto (MAMUD)

- Sampling calorimeter + Magnet for beam deflection
- Rate: ~7 MHz (μ)+ ~3 MHz (π)

Requirements

- 10⁻⁵ inefficiency μ detection
 - em/hadronic clusters separation
 - Sensitivity to the MIPs
- Deviate the beam out from the SAC

R&D program

Started in Protvino

Analysis: signal acceptance

Acceptance ~ 10% is achievable

Analysis: background rejection

Events/year	Total	Region I	Region II		
Signal (acc=17%)	65	16	49		
$K^+ \rightarrow \pi^+ \pi^0$	2.7	1.7	1.0		
$K^+ \rightarrow \mu^+ \nu$	1.2	1.1	<0.1		
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	~2	negligible	~2		
Other 3 – track decays	~1	negligible	~1		
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	1.3	negligible	1.3		
$K^+ \rightarrow \mu^+ \nu \gamma$	0.5	0.2	0.2		
K ⁺ \rightarrow e ⁺ (μ ⁺) $\pi^0 \nu$, others	negligible	_	_		
Total bckg.	9	3.0	6		

▶ <u>S/B ~ 8</u> (Region I ~5, Region II ~9)

Other Physics Opportunities

- P-326 Kaon Flux ~100 times NA48/2 Kaon Flux
- Other physics opportunities can be addressed:
 - Cusp like effects:
 - $\checkmark \quad K^{\scriptscriptstyle +} {\rightarrow} \pi^0 \pi^0 e^{\scriptscriptstyle +} \nu$
 - Lepton flavour violation:
 - $\checkmark \quad K_{e2}/K_{\mu2}, K^+ \rightarrow \pi^+ \mu^+ e^-, K^+ \rightarrow \pi^- \mu^+ e^+$
 - Search for new low mass particles:
 - $\checkmark \quad K^+ \rightarrow \pi^+ \pi^0 X$
 - $\checkmark \quad K^+ \rightarrow \pi^+ \pi^0 P \ (pseudoscalar \ sGoldstino)$
 - Study rare $\pi^+ \& \pi^0$ decays
 - Improve greatly on rare radiative kaon decays
 - And possibly, given the quality of the detector, topics in hadron spectroscopy

Conclusions

- <u>Near future</u>: test of the CKM matrix using rare Kaon decays
- <u>P-326 experiment:</u> measurement of $|V_{td}|$ with a ~10% of accurancy, from the K⁺ $\rightarrow \pi^+ \nu \nu$ decay
- <u>R&D program</u> for the most part of detectors started
- We propose an experiment able to reach a ~10⁻¹² sensitivity per event at an existing machine and employing the infrastructures of an existing experiment. [CERN-SPSC-P-326, 11/06/2005]

Year: 20XX

Quantity	Ехр	09	10	11	12	13	14	15	16
$\delta(Sin 2\beta_{Peng}) \sim 0.05$	Belle/Babar								
δ(Φ _{Bs})~0.02	LHCb								
δ(γ)~4° (B → D K)	LHCb								
$B_{(s)}$ →μ ⁺ μ [−] (SM sens.)	LHC								
$\delta(\mathbf{BR}(\mathbf{K}^+ \rightarrow \pi^+ \nu \nu)) \sim 0.10$	P326 (NA48/3)								
BR(K ⁰ $\rightarrow \pi^0 \nu \nu$) (SM sens.)	J-PARC								
$\delta(\mathbf{BR}(\mathbf{B} \rightarrow \tau \mathbf{v})) \sim 0.05$	Super-B								