

INFM

$K \rightarrow 3\pi \text{ decay results by NA48/2}$ at CERN SPS

"HQL 2006 " Munich 16-20 October

Gianluca Lamanna (University & INFN di Pisa)

On behalf of the **NA48/2** collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa Saclay, Siegen, Torino, Vienna

Outline

NA48/2 experiment

- Direct CP violation and linear slope
 asymmetry
 - $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ "neutral" asymmetry
 - $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ "charged" asymmetry

Dalitz Plot parameters measurement

- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: g,h,k
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: g,h,k

Conclusions

Gianluca Lamanna – HQL 2006

NA48/2: The detector

Spectrometer:

 $\sigma_p/p = 1.0\% + 0.044\% p \ [p in GeV/c]$

LKR calorimeter:

- $\sigma_{\rm E}/{\rm E} = 3.2\%/\sqrt{\rm E} + 9\%/{\rm E} + 0.42\%$ [E in GeV]
- Hodoscope, HAC, MUV, vetos
- Kabes
- **Beam Monitor**

Only the Spectrometer, the LKr and the Hodoscope are directly involved in the $K \rightarrow 3\pi$ analysis.

NA48/2: data taking

2003 run: ~ 50 days 2004 run: ~ 60 days **Total statistics 2 years:** $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: ~0.91.10⁸ $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: ~3.1.10⁹ Greatest amount of $K \rightarrow 3\pi$ ever collected >200 TB of data recorded

Direct CP violation: linear slope asymmetry

Direct CP violation in $K \rightarrow 3\pi$

Experimentally is very hard to detect CP violation in the partial decay widths

Comparison of the Dalitz plot density between K+ and K-

Matrix element:

 $|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2 + ...$

 $g_c = -0.215$ $g_n = 0.638$

h,k << q

Theoretical prediction and experimental results

Method to extract A_a

 Assuming the polinomial matrix element expansion The difference between K+ and K- linear slopes in 3π decays ($\Delta g=g^+-g^-$), could be extracted from the U projections using:

$$R(u) = \frac{N^{+}(u)}{N^{-}(u)} \propto N(\frac{1 + g^{+}u + hu^{2} + \dots}{1 + g^{-}u + hu^{2} + \dots}) \approx N(1 + \frac{\Delta gu}{1 + gu + hu^{2}})$$

"neutral" $g^0=0.638\pm0.020$

 $R(u) = \frac{N^{+}(u)}{N^{-}(u)} \propto N(\frac{1+g^{+}u+hu^{2}+...}{1+g^{-}u+hu^{2}+...}) \approx N(1+\Delta gu) \qquad \text{``charged''} \\ g^{+}=-0.2154\pm 0.0035$

This is valid only if K+ and Kbeams and acceptance are the same!!!

The presence of magnetic fields (both in beam and detector sector) introduces instrumental asymmetries that don't cancel in the simple ratio

Acceptance equalization principle

K+ K-

• Achromats (A) polarity reversed: weekly in 2003, 1 day in 2004

• Spectrometer magnet (B) polarity reversed: 1 day in 2003, 3 hours in 2004

* Jura and Saleve are the mountains outside of the CERN

Saleve

Jura

7

B+

Achromats: K⁺ Down

Achromats: K⁺ Up

 In each ratio the charged pions are deflected towards the same side of the detector (*left-right* asymmetry cancels out)

 In each ratio the event at the numerator and denominator are collected in subsequent period of data taking (global time variations)

• The whole data taking is subdivided periods in which all the field configurations are present (*Super Sample SS*)

Acceptance equalization: 4-ratio

double ratios:

 $R_{U} = R_{US} * R_{UJ} \approx n(1 + \Delta g_{U} / f(u))^{2}$

 $R_{D} = R_{DS} * R_{DJ} \approx n(1 + \Delta g_{D} / f(u))^{2} *$

 $R_{s} = R_{US} * R_{DS} \approx n(1 + \Delta g_{s} / f(u))^{2} <$

 $R_{J} = R_{UJ} * R_{DJ} \approx n(1 + \Delta g_{J} / f(u))^{2} \checkmark$

 $\Delta \mathbf{g}_{UD} = (\Delta \mathbf{g}_{U} - \Delta \mathbf{g}_{D})/2 \rightarrow \text{up-down apparatus asymmetry}$ $\Delta \mathbf{g}_{UB} = (\Delta \mathbf{g}_{S} - \Delta \mathbf{g}_{U})/2 \rightarrow \text{left-right apparatus asymmetry}$

4-ple ratio:

$$R_4 = R_{US} * R_{UJ} * R_{DS} * R_{DJ} \approx n(1 + \Delta g/f(u))^4$$

MC-independent approach:

A detailed MC is used for systematics studies.

Same achromat: global time variation (B field inversion) cancellation

Same side (J/S): beam geometry difference cancellation

• In the 4-ratio there is a 3-fold cancellation

- Left-right detector asymmetry
- Global time variation
- Beam line induced differences

The result is sensitive only to the time variation of acceptance COUPLED to space non uniformity with a characteristic time smaller than the fields alternation period .

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: Selection & recostruction

• Online selection: Trigger in 2 Levels:

• L1: CHOD signal (Q1: one charged particle) + LKr signal (NTPEAK: four gammas)

• L2: Online charged pion missing mass far from the $\pi^{\rm 0}$ mass

• <u>Offline selection</u>: among all the possible γ pairings, the couple for which $|\Delta z|$ is smallest is selected

• The K-decay vertex is the average between the two decay vertices

• After associating a charged track to the 2 π^0 s the compatibility with the PDG kaon mass is requested to be \pm 6 MeV. Vertex

Z(k,l)

$$Z_{ij} \approx \frac{1}{m_{\pi^0}} \sqrt{E_i E_j d_{ij}^2}$$

 Δz

Z(i,j)

 d_{ii}

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: Selected events

$$u = \left(M_{00}^{2} - s_{0}\right) \frac{1}{m_{\pi}^{2}}$$

• The u variable is reconstructed using the LKr only

- M_{00} is the $\pi^0\pi^0$ mass
- M_{00} can be also defined as the missing π^+ mass employing DCH and KABES (cross check)
- More than $91 \cdot 10^6$ events are selected
- Background free (pratically)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: systematics

• Thanks to the 4-uple ratio cancellations, in first approximation all main system biases cancel.

• Several sources of systematic uncertainty are studied. (for instance: resolution effects are studied using U distribution with bin width proportional to the U resolution, the L2 trigger geometrical component is studied using a detailed MC)

Gianluca Lamanna – HQL 2006

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: **Results**

<u>Charge asymmetry parameter (03+04 prelim. result)</u>: $A_g^0 = (2.1 \pm 1.6_{stat.} \pm 1.0_{syst} \pm 0.2_{ext}) \times 10^{-4} = (2.1 \pm 1.9) \times 10^{-4}$

$K^{\pm} \rightarrow \pi^{\pm} \pi^$

• Online selection: Trigger in 2 Levels:

- L1: CHOD signal (Q2: at least two charged particles)
- L2: Fast three tracks and vertex reconstruction

• <u>Offline selection</u>: the events with at least 3 "good" tracks are selected.

 The K-decay vertex is obtained propagating the tracks through the "blue field" (Earth magnetic field into the decay region)

• The 3 tracks invariant mass is recostructed. The event is selected if it exists at least one combination within ± 9 MeV from the K nominal mass.

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: Selected events

 $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{-}) = (5.576 \pm 0.031)\%$

 $\circ M_{12}$ is the even pions invariant mass

• Others definition (CM, kinematic fit, ..) , with different resolution in different phase space regions, are useful to study systematics.

 \circ About 3.1 \cdot 10 9 events are selected with negligible background

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: Systematics

•The small DCH internal misalignment is corrected reweighting the pions momentum. The corrections are deduced by the difference between the K+ and Kreconstructed mass.

•To avoid biases due to the different K+ and K- DCH acceptance, a radial cut around the actual (measured from the Data) K+ and K- beam position is applied ("virtual pipe" cut).

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: Results

Systematics effect		$\Delta g x 10^{-4}$	
DCH & beam related	Spectrometer alignment	±0.1	
	Momentum scale	±0.1	
	Acceptance and beam geometry	±0.2	
Pion decay		±0.4	
Pile up		±0.2	
Resolution effects		±0.3	
	L1: CHOD signal	±0.3	
Trigger	L2: MassBox	±0.3	
Total		±0.7	

 $\frac{Charge asymmetry parameter (03+04 prelim. result):}{A_g^c = (-1.3 \pm 1.5_{stat.} \pm 1.7_{syst}) \times 10^{-4} = (-1.3 \pm 2.3) \times 10^{-4}$

$K^{\pm} \rightarrow 3\pi$ linear slope asymmetries : Summary

2003 data final result: $A_a^0 = (1.8 \pm 2.2_{stat} \pm 1.3_{syst}) \times 10^{-4}$ $A_{a}^{c} = (1.6 \pm 2.1_{stat} \pm 2.0_{svst}) \times 10^{-4}$ 2003+2004 data preliminary result: $A_a^0 = (2.1 \pm 1.6_{stat} \pm 1.0_{syst}) \times 10^{-4}$ $A_a^c = (-1.3 \pm 1.5_{stat} \pm 1.7_{syst}) \times 10^{-4}$ Statistical precision similar in "charged" and "neutral" mode: statistics: Nº/N±~1/30 (√=1/5.5)

• slopes: |g⁰/g[±]|≈3

• More favorable Dalitz-plot distribution: gain factor f~1.5

*: Phys.Let.B 634:474-482,2006

Phys.Let.B 638:22-29,2006

Dalitz plot parameters measurement

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: Standard parametrization

• Attempt to fit with the standard parametrization

 $|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2 + ...$

 \circ The 1D fit is reliable only in the region above $2m_{\pi+}$

• The fit in the whole U range (or $M_{\pi0\pi0}^2$) gives a χ^2 /ndf = 9225/149 while for $M_{\pi0\pi0}^2$ >0.08 we have χ^2 /ndf = 133/110

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: Cusp

• The high statistics and the good resolution allow to see a "cusp" in the U (or $M^2_{\pi0\pi0}$) distribution in the position of $2m_{\pi+}$

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: rescattering contribution

• The M1 contribution is real below and immaginary above threshold

$$s_{\pi\pi} > 4m_{\pi^+}^2 \qquad |M^2| = (M_0)^2 + |M_1^2|$$

$$s_{\pi\pi} < 4m_{\pi^+}^2 \qquad |M^2| = (M_0)^2 + (M_1^2) + 2M_0M_1$$

• The cusp behaviour is proportional to the (a0-a2) scattering lenghts. (see Lucia Masetti's talk) $(a0-a2)m_{\pi}=0.268\pm0.010_{stat}\pm0.004_{syst}\pm0.013_{th}$

 \circ The χ^2 improvves including the 2 loops and the pionium contribution

• the final fit is performed excluding 7 bins around the cusp position

Cabibbo Phys. Rev. Lett. 93, 121801 (2004)

Cabibbo, Isidori JHEP 0503 (2005) 21

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: new parametrization & results

• Including the 2 loops contributions a second cusp appears above threshold

 \bullet The standard parametrization is not enough to described the $K^\pm\to\pi^\pm\pi^0\pi^0$ dynamics

• The 2D fit shows the presence of a non vanish k terms (the fit is performed in bin of $\cos\theta$, angle between π^+ and π^0)

• Setting k=0 (the quadratic v slope) the results of the fit are (*Phys.Lett. B633:173-283,2006*) (23×10⁶ events (2003)):

g=0.645±0.004_{stat}±0.009_{syst}

h'=-0.047±0.012_{stat}±0.011_{syst} (h'+(1/4)g²=h)

• The data are compatible with (preliminary):

k= 0.0097 ±0.0003_{stat}±0.0008_{syst}

ISTRA+: k=0.001±0.001±0.002 (252K events)

 (a0-a2) is not affected by the k term, but g and h are influenced by a non zero k term (2% and 25%)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: Dalitz plot

$d\Gamma/dudv \sim C(u,v)x(1+gu+hu^2+kv^2)$

• Rescattering effects neglected

• Present PDG values from experiment in 1970s

•Validation of the simple polinomial expansion with our precision

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: Fit

$$\chi^{2}(g,h,k,N) = \sum_{u,v} \frac{(F_{data} - NF_{MC})^{2}}{\delta F_{data}^{2} + N^{2} F_{MC}^{2}}$$

- The results are obtained minimizing the χ^2 , where F represents the population in the (u,v) bin.
- 0.47×10⁹ (in 2003 data sample) events analized for preliminary result
- The main contributions to the systematic uncertainty come from the pion momentum resolution and the trigger

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$: results

NA48/2 preliminary results: $g=(-21.131\pm0.009_{stat}\pm0.012_{syst})\%$ $h=(1.829\pm0.015_{stat}\pm0.036_{syst})\%$ $k=(-0.467\pm0.005_{stat}\pm0.011_{syst})\%$ One order of magnitude better than previous experiments

 Not perfect agreement with PDG values based on 1970s results

K^{\pm} →3π Dalitz plot: Summary K^{\pm} → $\pi^{\pm}\pi^{0}\pi^{0}$:

- The standard M expansion is not enough to describe the 3 pions dynamics.
- The contribution of the $\pi^+\pi^- \rightarrow \pi^0\pi^0$ rescattering cannot be neglected (the (a0-a2) scattering lenght can be deduced from this effect)
- k term different from zero observed for the first time
- The Dalitz plot parameters are measured with this new approach (different definition)

```
g=0.645\pm0.004_{stat}\pm0.009_{syst}
(with k=0)

h'=-0.047 ±0.012_{stat}\pm0.011_{syst}
(with k=0)

k= 0.0097

±0.0003_{stat}\pm0.0008_{syst}
(preliminary)
```

$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$:

- Rescattering effects and radiative corrections neglected (first step)
- Factor ~10 improvement with respect to previous measurement
- Standard parametrization is valid

(Preliminary) $g=(-21.131\pm0.009_{stat}\pm0.012_{syst})\%$ $h=(1.829\pm0.015_{stat}\pm0.036_{syst})\%$ $k=(-0.467\pm0.005_{stat}\pm0.011_{syst})\%$

Conclusions

 \bullet Charge K ${\rightarrow} 3\pi$ asymmetry measurement at level of few 10^4 is consistent with SM prediction

• The NA48/2 results, both in charged and neutral mode, supersede previous measurements of one order of magnitude

2003+2004 data preliminary result:

 $A_{g}^{0} = (2.1 \pm 1.6_{stat} \pm 1.0_{syst}) \times 10^{-4} (91.10^{6} \text{ events})$

 $A_{g}^{c} = (-1.3 \pm 1.5_{stat} \pm 1.7_{syst}) \times 10^{-4} (3.1 \cdot 10^{9} \text{ events})$

 \circ The Dalitz plot shape in the neutral mode is influenced by $\pi^+\pi^-\!\to\pi^0\pi^0$ rescattering

• The $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} k$ term is measured different from zero (preliminary)

• The $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ slopes are measured with a factor ~10 improvement w.r.t. previous measurement (in 1970s) (preliminary)

Spares

Theoretical predictions

Image: Standard Model L.Maiani, N.Paver '95 (2.3±0.6)x10 ⁻⁶ A. Bel'kov '95 <4x10 ⁻⁴ G.D'Ambrosio, G.Isidori '98 <10 ⁻⁵ E.Shabalin '01 <3x10 ⁻⁵ E.Gamiz, J.Prades, I.Scimemi '03 (-2.4±1.2)x10 ⁻⁵ E.Shabalin '05 (La Thuile'05) <8x10 ⁻⁵ SUSY G.D'Ambrosio, G.Isidori, G.Martinelli New physics E.Shabalin '98 [Weinberg model of extended Higgs doublet] I.Scimemi '04 >3x10 ⁻⁵			
A. Bel'kov '95 <4x10 ⁻⁴ G.D'Ambrosio, G.Isidori '98 <10 ⁻⁵ E.Shabalin '01 <3x10 ⁻⁵ E.Gamiz, J.Prades, I.Scimemi '03 (-2.4±1.2)x10 ⁻⁵ E.Shabalin '05 (La Thuile'05) <8x10 ⁻⁵ SUSY G.D'Ambrosio, G.Isidori, G.Martinelli New E.Shabalin '98 [Weinberg model of extended Higgs doublet] I.Scimemi '04 >3x10 ⁻⁵	Standard Model	L.Maiani, N.Paver '95	(2.3±0.6)x10 ⁻⁶
Standard ModelG.D'Ambrosio, G.Isidori '98<10^5E.Shabalin '01<3x10^5		A. Bel'kov '95	<4x10 ⁻⁴
ModelE.Shabalin '01 $<3x10^{-5}$ E.Gamiz, J.Prades, I.Scimemi '03 $(-2.4\pm1.2)x10^{-5}$ E.Shabalin '05 (La Thuile'05) $<8x10^{-5}$ SUSYG.D'Ambrosio, G.Isidori, G.Martinelli $~10^{-4}$ New physicsE.Shabalin '98 [Weinberg model of extended Higgs doublet] $~4x10^{-4}$ I.Scimemi '04 $>3x10^{-5}$		G.D'Ambrosio, G.Isidori '98	<10-5
E.Gamiz, J.Prades, I.Scimemi '03 $(-2.4\pm1.2)\times10^{-5}$ E.Shabalin '05 (La Thuile'05) $<8\times10^{-5}$ SUSYG.D'Ambrosio, G.Isidori, G.Martinelli $~10^{-4}$ New physicsE.Shabalin '98 [Weinberg model of extended Higgs doublet] $~4\times10^{-4}$ I.Scimemi '04 $>3\times10^{-5}$		E.Shabalin '01	<3x10 ⁻⁵
E.Shabalin '05 (La Thuile'05)<8x10-5SUSYG.D'Ambrosio, G.Isidori, G.Martinelli~10-4New physicsE.Shabalin '98 [Weinberg model of extended Higgs doublet]~4x10-4I.Scimemi '04>3x10-5		E.Gamiz, J.Prades, I.Scimemi '03	(-2.4±1.2)x10 ⁻⁵
SUSY New physicsG.D'Ambrosio, G.Isidori, G.Martinelli~10-4New physicsE.Shabalin '98 [Weinberg model of extended Higgs doublet]~4x10-4I.Scimemi '04>3x10-5		E.Shabalin '05 (La Thuile'05)	<8x10 ⁻⁵
New physicsE.Shabalin '98 [Weinberg model of extended Higgs doublet]~4x10-4I.Scimemi '04>3x10-5	SUSY	G.D'Ambrosio, G.Isidori, G.Martinelli	~10-4
I.Scimemi '04 >3x10 ⁻⁵	New physics	E.Shabalin '98 [Weinberg model of extended Higgs doublet]	~4x10 ⁻⁴
	p) e. ee	I.Scimemi '04	>3x10 ⁻⁵

Experimental results

<u>"Charged" mode K±→3π±</u>	Ford et al. (1970) at BNL $A_g = (-7.0 \pm 5.3) \cdot 10^{-3}$ Statistics: 3.2M K [±]	
	HyperCP prelim. (2000) at FNAL $A_g = (2.2 \pm 1.5 \pm 3.7) \cdot 10^{-3}$ Statistics: 390M K ⁺ , 1.6M K Preliminary, published as PhD thesis	
<u>"Neutral" mode K[±] →π[±]π⁰π⁰</u>	Smith et al. (1975) at CERN-PS A _g =(1.9±12.3)·10 ⁻³ Statistics: 28000 K [±]	
	TNF-IHEP Protvino (2004) $A_g = (0.2 \pm 1.9) \cdot 10^{-3}$ Statistics: 0.52M K [±]	

Stray magnetic field

The Earth field (*Blue Field*) was directly measured and used at the vertex recostruction level. The residual systematics is $\delta\Delta$ <10⁻⁵

 $\frac{P \text{ kick}(\text{stray field})}{P \text{ kick}(\text{spectrometer})} \approx 10^{-4}$

Spectrometer alignment

• The kaon mass depends from the time variation of the spectrometer alignment

• The mis-alignment gives a mismeasurement of the charged pion momentum

• The reconstructed invariant K mass is used to fine tune the spectrometer by imposing (α correction): $M_{k_{+}} = M_{k_{-}}$

• The non-perfect field alternation is tuned by imposing (β correction): $M_{K+-}=M_{Kpdg}$

Beam movements

• <u>Short time scale movement</u>: the beam moves during the SPS spill

- Monitored with an high resolution beam monitor on the beams
- •The 2 beam movement is "coherent"
- No effect in the 4-uple ratio

• Large time scale movement: the beam positions change every run

 Acceptance largely defined by central beam hole edge (~10 cm radius)

• The cut is defined around the actual beam position obtained with the c.o.g. measured run by run, for both charges as a function of the K momentum ("virtual pipe" cut)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: trigger systematics

Q1: The inefficiency is measured with all the 1-track events (0.25%). Systematics of 0.1 · 10⁻⁴. No trigger correction

NTPEAK: for technical problems the efficiency isn't the same at the beginning and at the end of the run (from 0.7% to 3%). The systematics estimation is limited by the statistics in the control sample: $1.3 \cdot 10^{-4}$. No trigger correction

L2: 70% of the L2 inefficiency is due to the DCHs wires inefficiency. The systematic uncertainty is obtained exploiting the MC simulation: 0.4 · 10⁻⁴ . No trigger correction

U2 asymmetry (2003 sample)

• At the very Dalitz plot edge the U1 and U2 distributions are different due to the different resolution

• The asymmetry results, for U1 and U2, are in agreement

V asymmetry (2003 sample)

<u>"wrong" Matrix element</u>: $|M(u,v)|^2 \sim 1 + gu + \gamma v + hu^2 + kv^2 + ...$

- \cdot The 4uplo ratio is constructed like in the U case to extract $\Delta\gamma$.
- The result is compatible with zero (only 2003 data plot is shown)

Resolution and fitting function

) 2 2 2 1.02 $\Delta q = 0$ 1.015 ∆g=0.0001 1.01 ∆g=0.01 ∆g=0.001 1.005 0.995 0.99 0.985 0.98 -1 -0.5 0.5 ш Fitting function

• U1 has best resolution in the region with high acceptance and higher lever arm for the fit • In the "neutral" fitting function the pole is on the left (good acceptance).

• In the non-aproximated "charged" fitting function the pole is outside the acceptance on the right hand.

"neutral" Acceptance

• The acceptance as a function of U in the $K \rightarrow \pi \pi^0 \pi^0$ is favorable for the fit function employed.

Montecarlo

• Thanks to the experimental principle of the acceptance cancellation we don't need MC

• Anyway a detailed GEANT3 MC was developed for systematic studies and to understand the detector acceptance

 Local DCH inefficiencies and variations of the beam geometry are simulated

Cusp effect

$$s_{\pi\pi} < 4m_{\pi^+}^2 \qquad \longrightarrow \qquad M_1 = -2\frac{(a0 - a2)m_{\pi^+}}{3}M_{+,thr}\sqrt{\frac{4m_{\pi^+}^2 - s_{\pi\pi}}{s_{\pi\pi}}}$$
$$|M^2| = (M_0)^2 + (M_1^2) + 2M_0M_{\pi^+}$$

Colangelo et al. approach

Different approach
Non relativistic effective lagrangian
Possibility to include automatically high order terms and

radiative corrections

•Disagreement at large U value

Work in progress

"Charged" Dalitz Plot systematics

Effect	g×10²	h×10 ²	k×10 ²
Pion momentum resolution	±0.004	±0.031	±0.009
Kaon momentum spectrum	±0.001	±0.001	±0.001
Spectrometer alignment	±0.002	±0.002	±0.001
Spectrometer momentum scale	±0.001	±0.002	±0.001
Total systematic error dominated by π momentum resolution	±0.005	±0.031	±0.009
Statistical uncertainty	±0.009	±0.015	±0.005
Trigger correction (L1+L2) (mainly due to HODO inefficiency)	-0.007±0.005	0.118±0.009	0.033±0.003
MC statistical uncertainty	±0.010	±0.017	±0.005
Final result	-21.131±0.015	1.829±0.040	-0.467±0.012
PDG'06	-21.57±0.31	1.07±0.48	-1.01±0.34

Systematics check

The stability of the result has been checked for several variables (longitudinal vertex position, radial cuts, acceptance, Coulomb factor, variation of the binning)

Other analysis

• $K{\rightarrow}\pi\pi^0\gamma$ (Direct photon emission, interference with IB, charge asymmetry)

- $K \rightarrow \pi \pi e \nu, \pi^0 \pi^0 e \nu, \pi \pi \mu \nu, \pi^0 \pi^0 \mu \nu$ ((a0-a2) e BR)
- $K \rightarrow \pi^0 e \nu, \pi^0 \mu \nu$ (Vus (prel.), form factors)
- $K \rightarrow \pi^0 e \nu \gamma$ (BR, T violation)
- $K \rightarrow \pi \pi^0 ee$ (BR, T violation)
- K $\rightarrow \pi \gamma \gamma, \pi \gamma \gamma \gamma$ (ChPt)
- $K \rightarrow ev, \mu v$ (BR, leptonic universality)
- K→π⁰π⁰π⁰eν,πee,πμμ etc... (BR,...)
- $K \rightarrow \pi^+ \pi^0(\gamma \gamma)$ (new particles search)

Spares

