CP Violation: angle α of the Unitarity Triangle

Christos Touramanis

The University of Liverpool BABAR Collaboration

THE UNIVERSITY of LIVERPOOL

Heavy Quarks and Leptons - HQL06 Munich, 18 October 2006

Outline

- Introduction
 - The experiments
 - The measurements

Results from the B Factories

$$B \to \pi^{+}\pi^{-}, \pi^{\pm}\pi^{0}, \pi^{0}\pi^{0}$$
$$B \to \rho^{+}\rho^{-}, \rho^{\pm}\rho^{0}, \rho^{0}\rho^{0}$$
$$B \to (\rho\pi)^{0}$$

Summary and outlook

Asymmetric-energy B Factories

B Factories reach 1000fb⁻¹!!!

Accessing the phase of the CKM matrix

Experimental method

Interference of decays with and without mixing ("double-slit" matter-antimatter experiment)

Time-dependent Decay Rates Asymmetry:

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \frac{S}{S} \sin(\Delta m_{B_d} t) - \frac{C}{C} \cos(\Delta m_{B_d} t)$$

$$S = \frac{2 \operatorname{Im}(\lambda)}{1 + |\lambda|^2} \quad , \quad C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2}$$

$$\lambda = \frac{q}{p} \frac{A}{A} = e^{-2i\beta} e^{-2i\gamma} = e^{-2i\alpha}$$

 $S = \sin(2\alpha)$

C = 0

- True in the case of tree amplitudes only
 C=0: no Direct CP violation
 Requires time-dependent measurement
 Boost of asymmetric B Factories
 - Silicon vertex detectors
 - •B flavor tagging (PID)

$$\lambda = e^{i2\alpha} \frac{T + P e^{+i\gamma} e^{i\delta}}{T + P e^{-i\gamma} e^{i\delta}}$$

 $S = \sqrt{1 - C^2} \sin(2\alpha_{eff})$ $C \propto \sin \delta$

- choice of final states: $\pi\pi$, $\rho\pi$, $\rho\rho$, $\alpha_1\pi$
- challenge: measure or limit $\Delta \alpha$

 $\Delta \alpha = \left| \alpha - \alpha_{eff} \right|$

Controlling the Penguins

Large penguins lead to:

• sizable $\pi^0\pi^0$

And <u>may</u> give rise to:Direct CPV in any mode

• Large $\Delta \alpha$

Extraction of a from $B \rightarrow hh (h=\pi,\rho)$ requires a <u>set of</u> measurements

- Strong upper limit on h^0h^0 leads to strong limit on $\Delta\alpha$
- Otherwise $\Delta\alpha$ must be calculated from full set of measurements on all related channels

Isospin analysis

- SU(2) symmetry relating u, d quarks
- EW penguins and other SU(2)-breaking effects can be ignored at current precision levels
- Need full set of BF and A_{CP} measurements

Gronau and London, Phys. Rev. Lett. 65, 3381 (1990)

S

$$= \sin(2\alpha + 2\Delta\alpha)\sqrt{1 - C^2}$$

$$\frac{1}{\sqrt{2}}A^{+-}$$

$$\frac{1}{\sqrt{2}}\tilde{A}^{+-}$$

$$\frac{1}{\sqrt{2}}\tilde{A}^{+-}$$

$$A^{+0} = \tilde{A}^{-0}$$

$$A^{+-} = A(B^{0} \rightarrow h^{+}h^{-})$$
$$\widetilde{A}^{+-} = A(\overline{B}^{0} \rightarrow h^{+}h^{-})$$
$$A^{+0} = A(B^{+} \rightarrow h^{+}h^{0})$$
$$\widetilde{A}^{-0} = A(B^{-} \rightarrow h^{-}h^{0})$$
$$A^{00} = A(B^{0} \rightarrow h^{0}h^{0})$$
$$\widetilde{A}^{00} = A(\overline{B}^{0} \rightarrow h^{0}h^{0})$$

$$\begin{split} A^{+0} &= \frac{1}{\sqrt{2}} A^{+-} + A^{00} \\ \widetilde{A}^{-0} &= \frac{1}{\sqrt{2}} \widetilde{A}^{+-} + \widetilde{A}^{00} \end{split}$$

Time-dependent CP analysis

- Full reconstruction of one B decaying to CP eigenstate.
- Flavor tagging of the other B.
 - Mis-tag probability measured in B_{flav} sample.
- Measurement of Δt .
- Extraction of S and C with ML fit on signal enriched sample.
 - Signal PDFs from MC.
 - Background PDFs from MC or sidebands

Signal-background separation

$B \rightarrow \pi \pi$

- Common wisdom (pre-2003):
 - Best system for extracting α (experimentally easiest modes)
- But penguins turned out to be large:
 - Sizable $\pi^0 \pi^0$ (BABAR and Belle)
 - Large Direct CPV (A_{CP}) in $\pi^+ \pi^-$ (Belle)

hep-ex/0607106

New Results (ICHEP) 347×10⁶ B pairs 675±42 signal events

 $S_{\pi\pi} = -0.53 \pm 0.14 \pm 0.02$

(S,C) = (0,0) excluded at a confidence level of 0.9997 (3.6 σ)

hep-ex/0608035

New Results (ICHEP) 535x10⁶ B pairs 1464±65 signal events $S_{\pi\pi} = -0.61 \pm 0.10 \pm 0.04$ $= -0.55 \pm 0.08 \pm 0.05$ 0.75 0.5 0.25 цп С -0.25

S

0.25 0.5 0.75

-0.5

-0.75

-1

-1

-0.75 -0.5 -0.25 0 Sππ

$B \rightarrow \pi^+ \pi^-$ A long-standing issue

C. Touramanis - Alpha - HQL06

 $B \rightarrow \pi^+ \pi^0, \pi^0 \pi^0$

New Results (ICHEP) 347×10⁶ B pairs (preliminary)

hep-ex/0607106

Summary on α from $B \rightarrow \pi\pi$

$B \rightarrow \rho \rho$

- Challenging:
 - Experimentally complicated $\rho^+ \rho^- \rightarrow \pi^+ \pi^0 \pi^- \pi^0$
 - Angular Time Dependent analysis to extract CP content
- But turned out to be most sensitive to α :
 - Small $\rho^0 \rho^0$ (small penguin pollution)
 - Dominant longitudinal polarisation (CP-even final state)
 - No significant 3-body and 4-body components

CP in a vector-vector final state

- three partial waves:
 - S (L=0, CP even)
 - P (L=1, CP odd)
 - D (L=2, CP even)

OR

three transversity amplitudes:

$$A_0 = -\frac{1}{\sqrt{3}}S + \sqrt{\frac{2}{3}}D \quad (CP - even \ longitudinal)$$

- $A_{\parallel} = \sqrt{\frac{2}{3}S + \frac{1}{3}D} \quad (CP even \ transverse)$
- $\iff A_{\perp} = P \quad (CP odd \ transverse)$

C. Touramanis - Alpha - HQL06

BABAR

hep-ex/0607098

 $B^0 \rightarrow \rho^0 \rho^0$

hep-ex/0607097

347×10⁶ B pairs (preliminary)

$a \text{ from } B \to \rho \rho$

 $\rightarrow (\rho \pi)^{0}$

 $\begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} \to \begin{pmatrix} \rho^{+} \pi^{-} \\ \rho^{-} \pi^{+} \\ \rho^{0} \pi^{0} \end{pmatrix} \to \pi^{+} \pi^{-} \pi^{0} \qquad A(B^{0} \to \pi^{+} \pi^{-} \pi^{0}) = f_{+} A(\rho^{+} \pi^{-}) + f_{-} A(\rho^{-} \pi^{+}) + f_{0} A(\rho^{0} \pi^{0}) \\ \widetilde{A}(\overline{B}^{0} \to \pi^{+} \pi^{-} \pi^{0}) = f_{+} \widetilde{A}(\rho^{+} \pi^{-}) + f_{-} \widetilde{A}(\rho^{-} \pi^{+}) + f_{0} \widetilde{A}(\rho^{0} \pi^{0})$

Time-Dependent Dalitz plot analysis and Isospin symmetry assumption

347×10⁶ B pairs (preliminary)

A. Snyder and H. Quinn, Phys. Rev. D, 48, 2139 (1993)

- UML fit with 27 coefficients (bilinear form factors)
- Simultaneous fit for time-dependence
- Fit includes $\rho(1450)$ and $\rho(1700)$
- CP parameters extracted from subsequent fits to these coefficients

 $B^0 \to \rho \pi$

449x10⁶ B pairs

- hep-ex/0609003
- Dalitz + Isospin (pentagon) analysis
- 26(Dalitz) + 5(Br($\rho^{\pm}\pi^{\pm}$), Br($\rho^{+}\pi^{0}$), Br($\rho^{0}\pi^{+}$), A($\rho^{+}\pi^{0}$), and A($\rho^{0}\pi^{+}$))

Signal SCF BB bkg continuum

C. Touramanis - Alpha - HQL06

0.7 0.75 0.8 0.85

-0.2 0

0.9

0.2 0.4

0.6

Putting it all together

CKMfitterhttp://ckmfitter.in2p3.fr/UTfithttp://utfit.dreamhosters.com/

Summary and prospects

- Large data samples and elaborate analysis techniques allow direct α determination with precision of 10^o.
- Result in excellent agreement with global U.T. fit
- More data from the B Factories will clarify possible experimental discrepancies, and could provide precision around 5^o.
- · LHCb and Super-B required to go beyond that

Backup material

Exclusive B reconstruction

A real $B^0 \rightarrow \pi^0 \pi^0$ candidate event

$B^0 \rightarrow \rho^+ \rho^-$

Conservative uncertainty on mis-reconstructed • signal fraction which can be reduced.

Table 4: Summary of additive systematic uncertainty contributions.

Contribution	$\sigma(N_{signal})$	$\sigma(f_L)$	$\sigma(S_{\text{long}})$	$\sigma(C_{\rm long})$
PDF parameterisation	$^{+16.7}_{-30.2}$	$+0.0082 \\ -0.0064$	$^{+0.0149}_{-0.0425}$	$+0.0300 \\ -0.0306$
SCF fraction	84.0	$^{+0.0007}_{-0.0011}$	+0.00235 -0.00355	+0.0070 -0.00683
m_{ES} and ΔE width	22.9	0.005	0.011	0.012
${\cal B}$ background normalisation	$^{+16.0}_{-17.2}$	$^{+0.0033}_{-0.0038}$	+0.0096 -0.0115	$^{+0.0024}_{-0.0015}$
floating B backgrounds	33.6	0.004	0.033	0.006
CPV in B background	$^{+3.3}_{-2.0}$	$+0.0006 \\ -0.0016$	+0.0059 -0.0214	+0.0118 - 0.0115
au	$^{+0.1}_{-0.4}$	$+0.0000 \\ -0.0002$	+0.0002 -0.0008	0.0007
Δm	$^{+0.0}_{-0.2}$	$+0.0000 \\ -0.0002$	$^{+0.0014}_{-0.0020}$	$^{+0.0018}_{-0.0012}$
tagging and dilution	$^{+2.6}_{-8.1}$	$^{+0.0029}_{-0.0021}$	+0.0016 -0.0053	$^{+0.0068}_{-0.0054}$
transverse polarisation ${\cal CPV}$	$^{+0.0}_{-8.3}$	+0.0057 -0.0000	+0.0125 -0.0152	+0.0095 -0.0110
WT SCF CPV	$^{+0.2}_{-1.1}$	$^{+0.0000}_{-0.0003}$	+0.0051 -0.0065	$+0.0116 \\ -0.0113$
DCSD decays	_	_	0.012	0.037
Interference	14.8	0.0036	0.023	0.022
Fit Bias	28	0.007	0.002	0.022
SVT Alignment	_	-	0.0100	0.0055
Total	$^{+97}_{-101}$	$^{+0.015}_{-0.013}$	$^{+0.05}_{-0.07}$	± 0.06

Improvements in modelling correlations and backgrounds result in a reduced systematic uncertainty on S and C.

 Improved upper limit for B→a₁ρ also helps to reduce systematic uncertainty.

$$\begin{aligned} \mathcal{B}(B^0 \to \rho^+ \rho^-) &= (23.5 \pm 2.2 (\text{stat}) \pm 4.1 (\text{syst})) \times 10 \\ f_L &= 0.977 \pm 0.024 (\text{stat})^{+0.015}_{-0.013} (\text{syst}), \\ S_{\text{long}} &= -0.19 \pm 0.21 (\text{stat})^{+0.05}_{-0.07} (\text{syst}), \\ C_{\text{long}} &= -0.07 \pm 0.15 (\text{stat}) \pm 0.06 (\text{syst}). \end{aligned}$$

New BaBar results: $B^0 \rightarrow (\rho \pi)^0$ (1)

New BaBar results: $B^0 \rightarrow (\rho \pi)^0$ (2)

$$S_{\rho\pi} = 0.01 \pm 0.12 \pm 0.028$$

$$C_{\rho\pi} = 0.154 \pm 0.090 \pm 0.037$$

$$\mathcal{A}_{\rho\pi} = -0.142 \pm 0.041 \pm 0.015$$

a more physically intuitive way to represent direct-CP quantities:

 $\mathcal{A}_{\rho\pi}^{+-} = 0.03 \pm 0.07 \pm 0.03$

 $\mathcal{A}_{\rho\pi}^{-+} = -0.38^{+0.15}_{-0.16} \pm 0.07$

parameters from the quasi-two-body description of $B \rightarrow \rho \pi$:

 $\Delta S_{\rho\pi} = 0.06 \pm 0.13 \pm 0.029$ $\Delta C_{\rho\pi} = 0.377 \pm 0.091 \pm 0.021$

An interpretation of the new $B^0 \rightarrow (\rho \pi)^0$ results

 $\delta_{+-} = \arg(A^{+*}A^{-}): \quad \text{the relative phase between the amplitudes of} \quad B^0 \to \rho^- \pi^+ \text{ and } B^0 \to \rho^+ \pi^-$

The constraint on α from $B^0 \rightarrow (\rho \pi)^0$ is relatively weak – but free from ambiguities!