Semileptonic B-decays (b to u transition)

Outline
Inclusive b to u decays
Exclusive b to u decays
Summary

(nothing new since ICHEP06) Eunil Won Korea University

Heavy Quarks and Leptons 16.10 ~ 20.10 2006 Munich, Germany

HOL06 Munich, Germany

Status of $|V_{ub}|$

Measurements of $|V_{ub}|$ provide independent crosscheck of the unitary trangle (UT)

With ϕ_{3} , $|V_{ub}|$ can constrain UT from tree level processes alone

 $\delta |V_{ub}| \sim 2\%$ is established firmly by now

HQL06 Munich, Germany

$|V_{ub}|$ from semileptonic B-decays

Semileptonic inclusive rates depend only on CKM matrix element and quark mass

$$\Gamma(b \to u\ell\bar{\nu}) = \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5$$

hadron level easy to calculate in OPE (<5% error)

$$V_{ub}| = 0.00424 \left\{ \frac{\mathcal{B}(B \to X_u \ell \nu)}{0.02} \frac{1.61 \text{ ps}}{\tau_b} \right\} \times (1.0 \pm 0.012_{\text{QCD}} \pm 0.022_{\text{HQE}})$$

But the problem is:

 ${\sf F}(b o c\ell
u)\sim {\sf 50F}(b o u\ell
u)$

OPE does not work on limited phase space

E. Won, Korea University

HOL06 Munich, Germany

$|V_{ub}|$: inclusive determination

Limited phase space to reduce the b to c transition background \rightarrow OPE fails Non perturbative **Shape Function** to extrapolate to the full phase space

Shape function: lightcone momentum distribution function of the b quark inside the meson Detailed shape not constrained theoretically, in particular the low tail

Shape function need to be determined from experimental data

Theoretical frameworks used by HFAG BLNP : B. O. Lange, M. Neubert and G. Paz, PRD 72 073006 (2005) DGE : J. R. Anderson and E. Gardi, JHEP 0601:097 (2006) BLL : C. W. Bauer, Z. Ligeti and M. E. Luke, PRD 64 113004 (2001) Also (*) LLR : A. K. Leibovich, I. Low and I. Z. Rothstein, PLB 486 86 (2000) \rightarrow for BaBar's new analysis (less dependence on SF)

HOL06 Munich, Germany

E. Won, Korea University

 $f(P_{+})$

HOL06 Munich, Germany

Lepton Endpoint

PRL 88 231803 (2002) PLB 621 28 (2005) PRD 73 012006 (2006)

CLEO

Belle

BaBar

First pioneered by CLEO

Subtraction of backgrounds crucial!

Measurements of m_X, P_+, q^{2} Belle PRL 95 241801 (2005) BaBar hep-ex/0507017

Reconstruct all decay m_X, P_{+}, q^2 products to measure m_X, P_{+}, q^2

- 1) Fully reconstruct B meson
 - flavor and momentum known
 - maximum purity but low efficiency
- 2) D(*) tag in reco-side
 - lower purity but efficiency improved

data	Phase space	$\Delta \mathcal{B}(10^{-4})$
	<i>m</i> _{\chi} <1.7	$12.4{\pm}1.1{\pm}1.0$
Belle 253/fb	m_{χ} <1.7, q^2 >8	8.4±0.8 ±1.0
	P+<0.66	$11.0 \pm 1.0 \pm 1.6$
BaBar	<i>m</i> _x <1.7, <i>q</i> ² >8	8.7±0.9 ±0.9
211/fb		(preliminary)

First measurement of P+ (Belle) Errors are larger than endpoint results

HOL06 Munich, Germany

Extracting $|V_{ub}|$ from partial branching fraction ("Morii diagram")

Fitting the Shape Function

Belle PRL 93 061803 (2004) BaBar PRD 72 052004 (2005)

Inclusive $|V_{ub}|$: BLNP framework $|V_{ub}|_{\text{BLNP}} = (4.49 \pm 0.19_{\text{exp}} \pm 0.27_{\text{theory}}) \times 10^{-3}$

 $m_b(SF) = 4.60 \pm 0.04 \text{ GeV}$ $\mu_{\pi}^2(SF) = 0.20 \pm 0.04 \text{ GeV}^2$ The total error in percentage: $\delta |V_{ub}| = \pm 7.3\%$ statistical 2.2% Expt. systematic 2.8% $b \rightarrow c \ell \nu \mod$ 1.9% $b \rightarrow u \ell \nu$ model 1.6% HQ parameters 4.2% Subleading SF + 3.8% Perturbative Weak Annihilation 1.9% Theoretical uncertainty is larger (not by a lot) 10/25n. Korea University

Inclusive $|V_{ub}|$: DGE framework

Dressed Gluon Exponentiation (DGE): on-shell b-quark calculation converted into hadronic variables used as approximation to the meson decay spectrum $|V_{ub}|_{DGE} = (4.46 \pm 0.20_{exp} \pm 0.20_{theory}) \times 10^{-3}$

11/25

BaBar PRL 96 222801 (2006)

m_X + weighted E_γ in $b \to s\gamma$

Data

m_X with large acceptance

OPE allows to extract $|V_{ub}|$ with ~ 5% error

 \rightarrow measure entire m_X spectrum up to 2.5 GeV \rightarrow This gives acceptance ~ 97%

No shape function in extraction of $|V_{\mu b}|$

• Residual SF dependence via signal MC systematic: 5.0%

• Need to subtract $b \rightarrow c$ background systematic: 3.8% increased statistical uncertainty

 $|V_{ub}| = (3.84 \pm 0.70_{\text{stat}})$ \pm 0.30_{syst} \pm 0.10_{theory}) \times 10⁻³

Improvement in theory uncertainty

HOL06 Munich, Germany

Exclusive decays to $|V_{ub}|$

measure exclusive final states

- good suppression of $b \rightarrow c$ decays, high signal-to-background
- small branching fraction $O(10^{-4}) \rightarrow$ need high statistics

require unknown form factor to extract $|V_{ub}|$ (complication due to QCD)

need to measure q^2 i.e. either 4-momentum of v or B

Channel $B \rightarrow \pi \ell \nu$ is the $\frac{d\Gamma(B \rightarrow \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2$ nost promising for $|V_{ub}|$ and $\frac{d\Gamma(B \rightarrow \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2$ - one dominant form factor $f_+(q^2)$ - q^2 shape and normalization needed

Determining the Form Factors

Earlier predictions made with quark models e.g. ISGW2Lattice QCD

✓ makes predictions at high q² (q² > ~ 16 GeV²)
 ✓ unquenched calculations have become available recently e.g. HPQCD PRD 73, 074502 (2006)
 FNAL NP Proc. Suppl. 140, 461 (2005)

Light Cone Sum Rules (LCSR)
 ✓ makes predictions at low q² (q² < ~ 14 GeV²)
 e.g. Ball & Zwicky PRD 71 014015 (2005), PRD 71, 014029 (2005)

 Parameterization has been used to extend Lattice QCD or LCSR to full q² range

- The normalization of FF becomes main issue when extracting $\left|V_{ub}\right|$

HOL06 Munich, Germany

Range of Applicability of Method

Luminosity 100 300 500

1000 fb⁻¹

Untagged

 $D^{(*)}\ell
u$ tag

Full reconstruction tag

Not an absolute but illustrative statement Full reconstruction tag will become method of choice soon Note:

> Belle 642 fb-1 BaBar 406 fb-1 (now reached 1/ab for combined data)

HOL06 Munich, Germany

CLEO PRD 68 072003 (2003)

CLEO untagged $\underline{B} \rightarrow \pi \ell \nu$

HOL06 Munich, Germany

5

10

 q^2 (GeV²)

15

20

FF models enter extraction of BF through

- \checkmark signal efficiency from MC
- ✓ b→u crossfeed and b→c

$$\pi^+$$
 result

$$\begin{split} \mathcal{B}(B \to \pi^{-}\ell^{+}\nu) &= (1.33 \pm 0.18_{\text{stat}} \pm 0.11_{\text{syst}} \\ &\pm 0.01_{\text{FF sig}} \pm 0.07_{\text{FF crossfeed}}) \times 10^{-4} \\ |V_{ub}| &= (3.17 \pm 0.17^{+0.16+0.53}_{-0.17-0.39} \pm 0.03) \times 10^{-3} \\ &\text{stat} \text{ syst theory FF shape} & (\pi \text{ and } \rho \text{ mode} \\ &\text{combined}) \\ &\text{LCSR+LQCD} \end{split}$$

E. Won, Korea University

17/25

18/25

BaBar hep-ex/0607060

BaBar untagged $B \to \pi \ell \nu$ preliminary

E. Won, Korea University

Updated from the last pub (PRD72051102)
: now 227 BB pairs used
• use much looser v reconstruction to improve signal efficiency

• no harsh cut on $|m^2_{miss}/E_{miss}|$

calculate q² from B momentum in
 "average" B-frame + unfolding
 → q² resolution still good (~400 MeV)

more parameters for background
 → reduced systematics

• 5 times the signal yield: 25/fb-1

• 12 bins in *q*²

BaBar hep-ex/0607060

BaBar untagged $B \rightarrow \pi \ell \nu$

• ISGW2 is incompatible with the data

• LQCD & LCSR consistent with BaBar data

• Covariance matrices are included in preprint \rightarrow theorists can use for analyses

• use BK parameterization for $f_+(q^2,\alpha)$

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.44 \pm 0.08_{stat} \pm 0.10_{syst}) \times 10^-$

QCD	Stat+syst. errors			a ²	$ V_{ub} (10^{-3})$	-
calculations	χ^2	$Prob(\chi^2)\%$	Pall	1		
ISGW2	34.1	0.07	– Dall- Zwicky	<10	$5.0\pm0.1\pm0.1\pm0.0$	\rightarrow LCSR
Ball-Zwicky	13.0	37.2		10		Lattice
FNAL	12.5	41.0	HPQCD	>16	4.1±0.2±0.2+0.6-0.4 	> OCD
HPQCD	10.2	60.2	FNAL	>16	3.6±0.2±0.2+0.6-0.4 ·	

HOL06 Munich, Germany

Belle hep-ex/060424 Submitted to PLB

tag

× 0.8

 $\pi^{-}l^{+}v$

10⁻⁴

Belle $B \to \pi/\rho\ell\nu$ with $D^{(*)}\ell\nu$

Ratios of decay rates are measured and found to be consistent with isospin relations

$$\frac{\Gamma(B^0 \to \pi^- \ell^+ \nu)}{\Gamma(B^+ \to \pi^0 \ell^+ \nu)} = (1.92 \pm 0.43 \pm 0.28)$$
$$\frac{\Gamma(B^0 \to \rho^- \ell^+ \nu)}{\Gamma(B^+ \to \rho^0 \ell^+ \nu)} = (1.74 \pm 0.53 \pm 0.33)$$

 $|V_{\mu h}|$ from q²>16 GeV² region, π^{-} , π^{0} combined

	q^2 (GeV ²)	$ V_{ub} (10^{-3})$
FNAL	>16	3.60±0.41±0.20+0.62-0.41(LQCD)
HPQCD	>16	4.03±0.46±0.22+0.59-0.41(LQCD)

This gives ~13% experimental uncertainty on $|V_{ub}|$ HOL06 Munich, Germany E. Won, Korea University

BaBar $B \to \pi/\rho \ell \nu$ with had. + SL tag combined

80

GeV²

BaBar hep-ex/0607089

Using 215/fb of data

Need to combine 4 measurements 2 x B-flavors: charged and neutral B 2 x tagging methods hadronic and semileptonic

 \rightarrow minimize total error in each bin of q^2

	q^2 (GeV ²)	$ V_{ub} (10^{-3})$
Ball-	<16	3.2±0.2±0.1+0.5-0.4
Zwicky		(uncertainty in FFs)
HPQCD	>16	4.5±0.5±0.3+0.7-0.5
FNAL	>16	4.0±0.5±0.3+0.7-0.5
APE	>16	4.1±0.5±0.3+1.6-0.7

HOL06 Munich, Germany

Belle $B \rightarrow \pi/\rho/\omega\ell\nu$ with full reco tag

Belle-CONF-0666

 MM^2

2

Missing mas

Using 497/fb of data

Reconstruct the hadronic decay of B first

Identify a lepton and search for light mesons

Extract yield from the missing mass squared distributions

ightarrow high purity signal obtained

$$B(B^0 \to \pi^- \ell^+ \nu) = (1.49 \pm 0.26_{\text{stat}} \pm 0.06_{\text{syst}}) \times 10^{-4}$$

 $B(B^+ \to \pi^0 \ell^+ \nu) = (0.86 \pm 0.17_{\text{stat}} \pm 0.06_{\text{syst}}) \times 10^{-4}$

HQL06 Munich, Germany

Summary of Exclusive $\mathcal{B}(B \to \pi^- \ell^+ \nu)$

HFAG ICHEP 2006

Average $\mathcal{B}(B \to \pi^- \ell^+ \nu)$ (1.37 ± 0.06 ± 0.06) × 10⁻⁴

Note: updated Belle SL tag result now included

Untagged analyses { currently the most precise

Summary of $|V_{ub}|$ from Exclusive Decays HFAG ICHEP 2006 (+ my bars for clarity)

Summary

• Inclusive measurements $|V_{ub}| \sim 7 \%$ precision

- \checkmark shape function is one of main issues
- ✓ Error is more or less equally shared by exp. and theory
- ✓ BaBar's new result (LLR) looks promising
 - has residual SF dependence

Exclusive measurements |V_{ub}| > 10 %
 Form factor calculation is the main issue
 <u>Theoreti</u>cal uncertainty is dominant

Question: $|V_{ub}| < 5 \%$ error achievable?

CLEO PRD 68 072003 (2003)

CLEO untagged $B \rightarrow \pi \ell \nu$

Search and fit for yields across a number of exclusive modes

$$\pi^+, \pi^0, \rho^+, \rho^0, \omega, \eta$$

Isospin constraints imposed in fits on 9.7 x 10^6 BB pairs

Extract partial branching fraction in 3 q2 bins for π^+ and ρ^+

HOL06 Munich, Germany

Belle $B \to \pi/\rho\ell\nu$ with $D^{(*)}\ell\nu$ tag

Using 253/fb (275 million BB events)

- Reconstruct tag side first $B \rightarrow D^{(*)} \ell \nu$
- Identify leptons
- Look for π or ρ in the remaining particles

Select events using kinematical variables

$$x_B^2 = 1 - \frac{1}{\sin^2 \theta_{12}^*} (\cos^2 \theta_{B1}^* + \cos^2 \theta_{B2}^2) - 2 \cos \theta_{B1}^* \cos \theta_{B2}^* \cos \theta_{12}^*) > -2$$

Extract the signal in (x_B^2, m_X) plane with 4 signal and 3 bkg components

27/25

$|V_{ub}|$: inclusive vs exclusive

HFAG ICHEP 2006

$|V_{ub}|$: direct vs. indirect

Indirect measurements constrain $|V_{ub}|$ \rightarrow indicated as bands in the plot

There are two direct measurements +: exclusive *:inclusive

The present value of $\sin 2\phi_1$ is more compatible with exclusive determination of $|V_{ub}|$