CP Violation and B Physics at the LHC

Robert Fleischer

CERN, Department of Physics, Theory Division

HQL 2006, Munich, Germany, 16–20 October 2006

- Setting the Stage
- A Brief Look at the Current B-Factory Data
- Key Targets of the B Physics Programme at the LHC
- Conclusions and Outlook
• **Standard Model (SM):** → Kobayashi–Maskawa mechanism of CP violation:

\[
\begin{align*}
D & \xrightarrow{V_{UD}} W^- \\
\overline{D} & \xrightarrow{\overline{V}_{UD}} W^+
\end{align*}
\]

Why Study Flavour Physics & CP Violation?

• **New Physics (NP):** \(\rightarrow\) typically new patterns in the flavour sector

 – SUSY scenarios;
 – left–right-symmetric models;
 – models with extra \(Z'\) bosons;
 – scenarios with extra dimensions;
 – “little Higgs” scenarios ...

• **\(\nu\) masses:** \(\rightarrow\) origin beyond the Standard Model (SM)!

 – CP violation in the neutrino sector?
 – Connection with quark-flavour physics?

• **Cosmology:** \(\rightarrow\) baryon asymmetry suggests new CP violation!

 – Could be associated with very high energy scales:

 * attractive mechanism: “leptogenesis”, involving new CP-violating sources in the decays of heavy Majorana neutrinos.

 – But could also be accessible in the laboratory ...
Challenging the Standard Model through Flavour Studies

Before searching for NP, we have to understand the SM picture!

- **Key problem:**
 - \textit{impact of strong interactions} \rightarrow \text{“hadronic” uncertainties}
 - Famous example: \text{Re}(\varepsilon'/\varepsilon)_K\text{, measuring “direct” CPV in }K\text{ decays.}

- **Prospects for the “good old” }K\text{-meson system [CPV in ’64: }\varepsilon_K \sim 10^{-3}]\text{:}
 - Clean tests of the SM are offered by }K^+ \to \pi^+\nu\bar{\nu}\text{ and }K_L \to \pi^0\nu\bar{\nu}\text{, as their hadronic pieces can be fixed through }K \to \pi\ell\nu\text{ decays!}
 - These “rare” decays are \textit{absent} at the tree level of the SM, i.e. originate there exclusively from loops, with BRs= \mathcal{O}(10^{-10}) \rightarrow \text{challenging}1

- **The }B\text{-meson system is a \textit{particularly promising} probe:** \rightarrow \text{our focus}
 - Offers various strategies: simply speaking, there are \textit{many }B\text{ decays!}
 - Search for clean SM relations that could be spoiled by NP ...

1Plans to measure }K^+ \to \pi^+\nu\bar{\nu}\text{ at the SPS (CERN) and }K_L \to \pi^0\nu\bar{\nu}\text{ at E391 (KEK/J-PARC).}
Where to Study B-Meson Decays?

- **B factories:**

 | asymmetric e^+e^- colliders @ $\Upsilon(4S) \rightarrow B^0_d\bar{B}^0_d, B^+_uB^-_u$ |
 |
 - PEP-II with the *Babar* experiment (SLAC);
 - KEK-B with the *Belle* experiment (KEK):

 \[\rightarrow \left\{ \begin{array}{l}
 \text{could well establish CP violation in the } B \text{ system;} \\
 \text{many interesting results with } \sum \mathcal{O}(10^9) \ B\bar{B} \text{ pairs } \ldots
 \end{array} \right. \]
 - Discussion of a super-B factory, with increase of luminosity by $\mathcal{O}(10^2)$.

- **Hadron colliders:**

 \[\rightarrow \text{produce also } B_s \text{ mesons,}^2 \text{ as well as } B_c, \Lambda_b, \ldots \]

 - Tevatron: CDF and D0 have reported first $B_{(s)}$-decay results ...
 - ... to be continued at the LHC $\gtrsim 2007$:

 \[\text{ATLAS & CMS (can also address some } B \text{ physics)} \]

 \oplus *dedicated B-decay experiment: LHCb*

\[^2\text{Recently, data at } \Upsilon(5S) \text{ were taken by Belle, allowing also access to } B_s \text{ decays [hep-ex/0610003].}\]
• A recent picture of the LHCb experiment @ CERN:
Central Target: Unitarity Triangle (UT)

• Application of the Wolfenstein parametrization: \[\text{[Wolfenstein (1984)]}\]

\[
\hat{V}_{\text{CKM}} = \begin{pmatrix}
1 - \frac{1}{2} \lambda^2 & \frac{\lambda}{\lambda^2} & A \lambda^3 (\rho - i \eta) \\
-\lambda & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\
A \lambda^3 (1 - \rho - i \eta) & -A \lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)
\]

→ phenomenological expansion in \(\lambda \equiv |V_{us}| = 0.22\) [from \(K \to \pi \ell \bar{\nu}_\ell\)]

• Unitarity of the CKM matrix:

\[
\hat{V}_{\text{CKM}} \cdot \hat{V}_{\text{CKM}} = \hat{1} = \hat{V}_{\text{CKM}} \cdot \hat{V}_{\text{CKM}}
\]

\[
R_b = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left|\frac{V_{ub}}{V_{cb}}\right|
\]

\[
R_t = \frac{1}{\lambda} \left|\frac{V_{td}}{V_{cb}}\right|
\]

\[
\bar{\rho} \equiv (1 - \lambda^2/2) \rho, \quad \bar{\eta} \equiv (1 - \lambda^2/2) \eta \quad \rightarrow \quad \text{NLO corrections [Buras et al. (1994)]}
\]
Key Processes for CP Violation: Non-Leptonic B Decays

- **Tree diagrams:**

 \[b \to u, c \quad W \quad \bar{u}, \bar{c} \quad d(\bar{s}) \]

- **Penguin diagrams:**

 - **QCD penguins:**

 \[b \to u, c, t \quad W \quad q = u, c, d, s \]

 - **Electroweak (EW) penguins:**

 \[b \to u, c, t \quad W \quad Z, \gamma \quad \bar{q} \]

- The calculation of the decay amplitudes is theoretically very challenging:

 \[
 A(B \to f) \sim \sum_k \frac{C_k(\mu)}{\text{pert. QCD}} \times \frac{f|Q_k(\mu)|B}{\text{“unknown”}}
 \]

 [Details and recent progress → talk by Martin Beneke]
Amplitude relations allow us in fortunate cases to eliminate the hadronic matrix elements (→ typically strategies to determine the UT angle γ):

- **Exact relations:** class of pure “tree” decays (e.g. $B \to DK$).
- **Approximate relations**, which follow from the flavour symmetries of strong interactions, i.e. $SU(2)$ isospin or $SU(3)_F$:

 \[B \to \pi\pi, B \to \pi K, B(s) \to KK. \]

Decays of neutral B_d and B_s mesons:

- Interference effects through $B_q^0 - \overline{B_q^0}$ mixing:
- Lead to “mixing-induced” CP violation \mathcal{A}_{CP}^{mix}!
- If one CKM amplitude dominates:

 \[\Rightarrow \text{hadronic matrix elements cancel!} \]

* Example: \[B^0_d \to J/\psi K_S \Rightarrow \sin 2\beta \] [Bigi, Carter & Sanda (’80–’81)]
A Brief Roadmap of Quark-Flavour Physics

• CP-B studies through various processes and strategies:

\[B \to \pi\pi \text{ (isospin)}, \ B \to \rho\pi, \ B \to \rho\rho \]

\[
\begin{align*}
R_b (b \to u, c \ell \bar{\nu}_\ell) & \quad R_t (B^0_q - \bar{B}^0_q \text{ mixing}) \\
\{ B_d \to \pi^+\pi^- \} & \quad \{ B_s \to K^+K^- \} \\
\gamma & \quad \beta
\end{align*}
\]

\[B \to \pi K \text{ (penguins)} \]

\[
\begin{align*}
B_u^\pm & \to K^\pm D \\
B_d & \to K^{*0} D \\
B_c^\pm & \to D_s^\pm D
\end{align*}
\]

\[
B_d \to D^{(*)\pm} \pi^- : \gamma + 2\beta \\
B_s \to D_s^{\pm} K^- : \gamma + \phi_s
\]

• Moreover “rare” decays: \(B \to X_s \gamma, B_{d,s} \to \mu^+\mu^-, K \to \pi\nu\bar{\nu}, \ldots \)
 – Originate from loop processes in the SM. \([\to \text{talk by A. Weiler}]\)
 – Interesting correlations with CP-B studies.

\[
\text{New Physics} \quad \Rightarrow \quad \text{Discrepancies}
\]
Status of the Unitarity Triangle

- **Two competing groups:** → many plots & correlations ...

 - *UTfit* Collaboration [http://www.utfit.org]:

 ⇒ impressive global agreement with KM, but no longer “perfect” ...
A Brief Look at the Current B-Factory Data:

Two popular avenues for New Physics to manifest itself ...
1. New Physics @ Amplitude Level:

- Typically *small* effects if SM tree processes play the dominant rôle.

- Potentially *large* effects in the penguin sector through new particles in the loops or new contributions at the tree level: e.g. SUSY, Z' models.

\rightarrow hot topics ...
CP Violation in $b \rightarrow s$ Penguin Modes

- $B_d \rightarrow \phi K_S$ is the key example: amplitude structure of the SM \Rightarrow

$$\langle \sin 2\beta \rangle_{\phi K_S} = \langle \sin 2\beta \rangle_{\psi K_S} + \mathcal{O}(\lambda^2), \quad A_{\text{dir}}^{\text{CP}}(B_d \rightarrow \phi K_S) = 0 + \mathcal{O}(\lambda^2)$$

Preliminary

$$\sin(2\beta^\text{eff}) = \sin(2\phi_1^\text{eff})$$

NP could be present, but still cannot be resolved → stay tuned ...
The $B \to \pi K$ Puzzle

- Observables with a sizeable impact of EW penguins: q, ϕ

$$R_c \equiv \frac{2}{\text{BR}(B^+ \to \pi^0 K^+) + \text{BR}(B^- \to \pi^0 K^-)}$$

$$R_n \equiv \frac{1}{2} \left[\frac{\text{BR}(B_d^0 \to \pi^- K^+) + \text{BR}(\bar{B}_d^0 \to \pi^+ K^-)}{\text{BR}(B_d^0 \to \pi^0 K^0) + \text{BR}(\bar{B}_d^0 \to \pi^0 K^-)} \right]$$

→ NP in EWPs!?
• (Preliminary) Status after ICHEP ’06:

- The SM prediction is very stable, with further reduced errors!
- The B-factory data have moved quite a bit towards the SM.
- Suggested by constraints from rare $B \to X_s \ell^+\ell^-$ decays ...

- Furthermore puzzling CP asymmetries: $B^0_d \to \pi^0 K_S$, $B^\pm \to \pi^0 K^\pm$.

⊕ correlations with rare B and K decays

NP could be present, but still cannot be resolved → stay tuned ...
2. New Physics in $B^0_q - \bar{B}^0_q$ mixing:

- NP particles in boxes or tree contributions (e.g. SUSY, Z' models):

 $$M^q_{12} = M^{q,\text{SM}}_{12} (1 + \kappa_q e^{i\sigma_q}) \Rightarrow$$

 - Mass difference: $\Delta M_q = \Delta M^{\text{SM}}_q |1 + \kappa_q e^{i\sigma_q}|$
 - Mixing phase: $\phi_q = \phi^{\text{SM}}_q + \phi^{\text{NP}}_q = \phi^{\text{SM}}_q + \text{arg}(1 + \kappa_q e^{i\sigma_q})$

Constraints in the NP Space of $B_q^0 - \bar{B}_q^0$ Mixing

- Contours in the $\sigma_q - \kappa_q$ plane following from $\rho_q \equiv \Delta M_q / \Delta M_q^{SM}$:

$$[0.6 \leq \rho_q \leq 1.4]$$

- Contours in the $\sigma_q - \kappa_q$ plane following from the NP phase ϕ_{q}^{NP}:

$$[10^\circ \leq |\phi_{q}^{NP}| \leq 170^\circ]$$
Implications of the B-Factory Data for the B_d System

- **Determination of $\rho_d = \Delta M_d / \Delta M_d^{SM}$**: \(\Delta M_d^{SM}\) required, involving ...

 - CKM parameter $|V_{td}^*V_{tb}|$: \(\rightarrow\) governed by γ, if unitarity is used.
 - Hadronic parameter $f_{B_d}^2\hat{B}_{B_d}$: lattice \(\rightarrow\) two benchmark sets:
 * JLQCD results (2 flavours of dynamical light Wilson quarks).
 * f_{B_d} from HPQCD (3 dynamical flavours) with \hat{B}_{B_d} from JLQCD.

- **Determination of the NP phase**: \(\rightarrow\) $\phi_d^{NP} = (2\beta)_{\psi K_S} - (2\beta)_{\text{true}}$

 - ϕ_d^{NP} is governed by $R_b \propto |V_{ub}/V_{cb}|$;
 - Unfortunately, discrepancy between $|V_{ub}|_{\text{excl}}$ and $|V_{ub}|_{\text{incl}}$...

![Graphs showing κ_d vs. σ_d](image)

JLQCD and $\phi_d^{NP}|_{\text{excl}} = -(2.5 \pm 8.0)^\circ$

(HP+JL)QCD and $\phi_d^{NP}|_{\text{incl}} = -(10.1 \pm 4.6)^\circ$
Key Targets of the B Physics Programme at the LHC

→ high statistics and *complementarity* to B factories:

fully exploit the B_s-meson system!
General Features of the B_s System

- **Rapid $B^0_s - \bar{B}^0_s$ oscillations**: $\Delta M_s \equiv \mathcal{O}(20 \text{ ps}^{-1}) \gg \Delta M_d \equiv 0.5 \text{ ps}^{-1}$

 \Rightarrow challenging to resolve them experimentally!

- **The width difference $\Delta \Gamma_s$ is expected to be of $\mathcal{O}(10\%)$**: [→ talk by A. Lenz]

 - Experimental status: $B_s \to J/\psi \phi \oplus$ Tevatron \Rightarrow

 \[
 \frac{\Delta \Gamma_s}{\Gamma_s} = \begin{cases}
 0.24^{+0.28+0.03}_{-0.38-0.04} & \text{[D0 ('05)]} \\
 0.65^{+0.25}_{-0.33} \pm 0.01 & \text{[CDF ('05)]} \\
 \end{cases} \quad \text{LHCb} \quad \text{[precision } \sim 0.01\text{]}
 \]

 - May provide interesting CPV studies through “untagged” rates:

 \[
 \langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B^0_s(t) \to f) + \Gamma(\bar{B}^0_s(t) \to f)
 \]

 * The rapidly oscillating ΔM_st terms cancel!
 * Various “untagged” strategies were proposed.

 [Dunietz ('95); R.F. & Dunietz ('96); Dunietz, Dighe & R.F. ('99); ...]

- **The CP-violating phase of $B^0_s - \bar{B}^0_s$ mixing is tiny in the SM:**

 \[
 \phi_s \equiv -2\lambda^2 \eta \approx -2^\circ \Rightarrow \text{interesting for NP searches (see below)!}
 \]
Hot News of this Spring:

- **Signals for $B_s^0 - \bar{B}_s^0$ mixing at the Tevatron:**
 - For many years, only lower bounds on ΔM_s were available from the LEP (CERN) experiments and SLD (SLAC)!
 - Finally, the value of ΔM_s could be pinned down: [→ talk by S. Menzemer]
 * D0: \Rightarrow two-sided bound $17 \text{ ps}^{-1} < \Delta M_s < 21 \text{ ps}^{-1}$ (90% C.L.)
 $\Rightarrow 2.5 \sigma$ signal at $\Delta M_s = 19 \text{ ps}^{-1}$
 * CDF: $\Delta M_s = [17.77 \pm 0.10\text{(stat)} \pm 0.07\text{(syst)}] \text{ ps}^{-1} \gtrsim 5\sigma$

- **These new results have already triggered considerable theoretical activity:**

Space for NP

in the

B_s-Meson System:

$$M_{12}^s = M_{12}^{s,SM} \left(1 + \kappa_s e^{i\sigma_s}\right)$$

→ in analogy to the B_d system ...

Constraints on NP through \(\Delta M_s \)

- **CKM unitarity and Wolfenstein expansion:** \[|V_{ts}^* V_{tb}| = |V_{cb}| \left[1 + \mathcal{O}(\lambda^2) \right] \]

 \[\Rightarrow \text{no information on } \gamma \text{ and } R_b \text{ needed (in contrast to } \Delta M_d)! \]

- **Numerical results:**
 \[
 \Delta M_s^{\text{SM}} \bigg|_{\text{JLQCD}} = (16.1 \pm 2.8) \text{ ps}^{-1}
 \]
 \[
 \rho_s \equiv \frac{\Delta M_s / \Delta M_s^{\text{SM}}}{\text{JLQCD}} = 1.08^{+0.03}_{-0.01}(\text{exp}) \pm 0.19(\text{th})
 \]
 \[
 \Delta M_s^{\text{SM}} \bigg|_{(\text{HP+JL})\text{QCD}} = (23.4 \pm 3.8) \text{ ps}^{-1}
 \]
 \[
 \rho_s \bigg|_{(\text{HP+JL})\text{QCD}} = 0.74^{+0.02}_{-0.01}(\text{exp}) \pm 0.18(\text{th})
 \]

- **Allowed regions in the } \sigma_s-\kappa_s \text{ plane:**

Figure 8: The allowed regions in the } \sigma_s-\kappa_s \text{ plane for different QCD calculations. The left panel shows the allowed regions for JLQCD, while the right panel shows the regions for (HP+JL)QCD.
Constraints on NP through ΔM_s and ΔM_d

• The ratio $\Delta M_s/\Delta M_d$ involves just an $SU(3)$-breaking parameter:

$$\xi \equiv \frac{f_{B_s} \hat{B}_{B_s}^{1/2}}{f_{B_d} \hat{B}_{B_d}^{1/2}} \rightarrow \text{reduced th. uncertainty as compared to } f_{B_q} \hat{B}_{B_q}^{1/2}.$$

• Usually determination of UT side R_t. Different avenue (CKM unitarity):\(^3\)

$$\frac{\rho_s}{\rho_d} = \lambda^2 \left[1 - 2 R_b \cos \gamma + R_b^2 \right] \left[1 + \mathcal{O}(\lambda^2) \right] \frac{1}{\xi^2} \frac{M_{B_d} \Delta M_s}{M_{B_s} \Delta M_d}$$

\[^3\text{Scenario for 2010: } \gamma = (65 \pm 20)^\circ \overset{\text{LHCb}}{\longrightarrow} (70 \pm 5)^\circ \text{ with (HP+JL)QCD lattice values.}\]
Golden Process to Search for NP in $B_s^0 - \bar{B}_s^0$ Mixing:

$B_s^0 \rightarrow J/\psi \phi$

$\rightarrow B_s^0$ counterpart of $B_d^0 \rightarrow J/\psi K_S$...

Let’s have a closer look ...

- There is an important difference with respect to $B_d^0 \rightarrow J/\psi K_S$:

 final state is an admixture of different CP eigenstates!

- **Angular distribution** of the $J/\psi [\rightarrow \ell^+\ell^-] \phi [\rightarrow K^+K^-]$ decay products:

 \Rightarrow the different CP eigenstates can be disentangled!

- **Linear polarization amplitudes**: $A_0(t), A_\parallel(t), A_\perp(t)$

 - $A_0(t)$ and $A_\parallel(t)$ correspond to CP-even final-state configurations;
 - $A_\perp(t)$ describes a CP-odd final-state configuration.
Simple: Time-Dependent One-Angle Distribution

\[
\frac{d\Gamma(t)}{d\cos \Theta} \propto \left(|A_0(t)|^2 + |A_\parallel(t)|^2 \right) \frac{3}{8} (1 + \cos^2 \Theta) + \left| A_\perp(t) \right|^2 \frac{3}{4} \sin^2 \Theta
\]

- The angular dependence allows us to extract the following observables:

\[
P_+(t) \equiv |A_0(t)|^2 + |A_\parallel(t)|^2, \quad P_-(t) \equiv |A_\perp(t)|^2
\]

- **Untagged data samples:** → untagged rates ...

\[
P_\pm(t) + \overline{P}_\pm(t) \propto [(1 \pm \cos \phi_s)e^{-\Gamma_Lt} + (1 \mp \cos \phi_s)e^{-\Gamma_Ht}]
\]

- **Tagged data samples:** → CP asymmetries ...

\[
\frac{P_\pm(t) - \overline{P}_\pm(t)}{P_\pm(t) + \overline{P}_\pm(t)} = \pm \frac{2 \sin(\Delta M_s t) \sin \phi_s}{(1 \pm \cos \phi_s)e^{+\Delta \Gamma_{st}/2} + (1 \mp \cos \phi_s)e^{-\Delta \Gamma_{st}/2}}
\]
Comments

\[\phi_s = -2\lambda^2 R_b \sin \gamma + \phi_s^{\text{NP}} \approx \phi_s^{\text{NP}} \] ⇒

- CP-violating NP effects would be indicated by the following features:
 - The *untagged* observables depend on *two* exponentials;
 - *Sizeable* values of the CP-violating asymmetries.

- These general features hold also for the full *three-angle* distribution:
 - Much more involved than one-angle case [Dighe, Dunietz & R.F. (1999)].
 - But provides additional information through the following terms:
 \[\text{Re}\{A_0^*(t)A_\parallel(t)\}, \quad \text{Im}\{A_f^*(t)A_\perp(t)\} \quad (f \in \{0, \parallel\}). \]
 - No experimental draw-back with respect to the one-angle case!

- Following these lines, \(\Delta \Gamma_s \) (see above) and \(\phi_s \) can be extracted:
 - Note: \(\Delta \Gamma_s = \Delta \Gamma_s^{\text{SM}} \cos \phi_s \) [Grossman (1996)] ⇒ *reduction* of \(\Delta \Gamma_s \).
News from the Tevatron & Reach at the LHC

• **Very recent (preliminary) analysis by D0:** [D0Conference note 5144 ('06)]

 – Untagged, time-dependent three-angle $B_s \to J/\psi \phi$ distribution:

 \[
 \Rightarrow \phi_s = -0.79 \pm 0.56 \text{ (stat.)} \pm 0.01 \text{ (syst.)} = -(45 \pm 32 \pm 0.6)°
 \]

 – Imposing also constraints form semilept. B decays: [D0note 5144-Conf ('06)]

 \[
 \Rightarrow \phi_s = -0.56^{+0.44}_{-0.41} = -(32^{+25}_{-23})°
 \]

 \Rightarrow still not stringently constrained, but very accessible @ LHC ...

• **Experimental reach at the LHC:** [O. Schneider, M. Smizanska, T. Speer]

 – LHCb: $\sigma_{\text{stat}}(\sin \phi_s) \approx 0.031$ (1 year, i.e. 2 fb^{-1}) [0.013 (5 years)];

 – ATLAS & CMS: expect uncertainties of $\mathcal{O}(0.1)$ (1 year, i.e. 10 fb^{-1}).
Impact of CP Violation Measurements on σ_s, κ_s

- **Illustration through two scenarios (~ 2010):**

 (i) $(\sin \phi_s)_{\text{exp}} = -0.04 \pm 0.02$: corresponds to the SM;

 (ii) $(\sin \phi_s)_{\text{exp}} = -0.20 \pm 0.02$: \rightarrow NP @ $10\,\sigma$ [corresponds to the “tension” in the UT fits for $\kappa_s = \kappa_d$, $\sigma_s = \sigma_d$ \rightarrow “magnification” in the B_s system]

- **Remarks:**

 - It is very challenging to establish NP without new CP-violating effects.
 - But the data still leave a lot of space for such effects in specific NP scenarios (SUSY, Z', ...), which could be detected at the LHC!

 [Details: P. Ball & R.F., hep-ph/0604249 \oplus references therein]
Further Benchmark Decays

for the

LHCb Experiment

→ very rich physics programme ...
Two Major Lines of Research

1. **Precision measurements of γ:**
 - **Tree strategies**, with expected sensitivities after 1 year of taking data:
 - $B^0_s \to D^\mp K^\pm$: $\sigma_\gamma \sim 14^\circ$
 - $B^0_d \to D^0 K^*$: $\sigma_\gamma \sim 8^\circ$... to be compared with the
 - current B-factory data: $\gamma|_{D^(*)K^(*)} = \begin{cases} (62^{+35}_{-25})^\circ & \text{(CKMfitter)} \\ (65 \pm 20)^\circ & \text{(UTfit)} \end{cases}$
 - **Decays with penguin contributions:**
 - $B^0_s \to K^+ K^-$ and $B^0_d \to \pi^+ \pi^-$: $\sigma_\gamma \sim 5^\circ$
 - $B^0_s \to D^+_s D^-_s$ and $B^0_d \to D^+_d D^-_d$

2. **Analyses of rare decays which are absent at the SM tree level:**
 - $B^0_s \to \mu^+ \mu^-$, $B^0_d \to \mu^+ \mu^-$
 - $B^0_d \to K^{*0} \mu^+ \mu^-$, $B^0_s \to \phi \mu^+ \mu^-$; ...

→ let’s have a closer look at some decays ...

[For a recent experimental overview, see A. Schopper, hep-ex/0605113]
CP Violation in $B_s \rightarrow D_s^\pm K^\mp$ **and** $B_d \rightarrow D^\pm \pi^\mp$

- **General case:**

 $$B_q^0 \qquad \bar{B}_q^0$$

 B_q^0 appears in D_q and \bar{u}_q.

 $$B_q^0 \qquad \bar{B}_q^0$$

 \bar{B}_q^0 appears in D_q and u_q.

 $e^{-i\phi_q}$ is associated with B_q^0.

 $e^{i\gamma}$ is associated with \bar{B}_q^0.

 $\phi_q + \gamma$

 - **$q = s$:** $D_s \in \{ D_s^+, D_{s*}^+, \ldots \}$, $u_s \in \{ K^+, K_{*+}, \ldots \}$:

 \[\rightarrow \text{hadronic parameter } X_s e^{i\delta_s} \propto R_b \Rightarrow \text{large interference effects!} \]

 - **$q = d$:** $D_d \in \{ D^+, D_{*+}, \ldots \}$, $u_d \in \{ \pi^+, \rho^+, \ldots \}$:

 \[\rightarrow \text{hadronic parameter } X_d e^{i\delta_d} \propto -\lambda^2 R_b \Rightarrow \text{tiny interference effects!} \]
• \(\cos(\Delta M_q t) \) and \(\sin(\Delta M_q t) \) terms of the time-dependent decay rates:

\[
\Rightarrow \text{theoretically clean determination of } \phi_q + \gamma \quad \phi_q \text{ known} \quad [\gamma]
\]

[Dunietz & Sachs (1988); Aleksan, Dunietz & Kayser (1992); Dunietz (1998); ...]

• **However, there are also problems:**

 – We encounter an *eightfold* discrete ambiguity for \(\phi_q + \gamma \)!

 – In the \(q = d \) case, an additional input is required to extract \(X_d \) since \(\mathcal{O}(X_d^2) \) interference effects would have to be resolved \(\rightarrow \text{impossible} \) ...

• **Combined analysis of** \(B_s^0 \to D_s^{(*)+}K^- \) and \(B_d^0 \to D_s^{(*)+}\pi^- \): [R.F. (2003)]

\[
s \leftrightarrow d \quad \Rightarrow \quad U\text{-spin symmetry provides an interesting playground}^{4}
\]

 – An *unambiguous* value of \(\gamma \) can be extracted from the observables!

 – To this end, \(X_d \) has *not* to be fixed, and \(X_s \) may *only* enter through a \(1 + X_s^2 \) correction, which is determined through *untagged* \(B_s \) rates!

 – Promising first studies by LHCb:

\(^4\)The \(U\)-spin is an \(SU(2) \) subgroup of the \(SU(3)_F \) flavour-symmetry group, connecting \(d \) and \(s \) quarks in analogy to the conventional isospin symmetry, which relates \(d \) and \(u \) quarks to each other.
Both expressions now giving very interesting precision on γ. Right hand plot has precision of 5 degrees, and small systematic. Ambiguous solutions now excluded.

[G. Wilkinson @ CKM 2005]
The $B_s \to K^+K^-$, $B_d \to \pi^+\pi^-$ System

- $B^0_s \to K^+K^-$:

- $B^0_d \to \pi^+\pi^-$:

\[\Rightarrow \quad s \leftrightarrow d \]
• Structure of the decay amplitudes in the Standard Model:

\[A(B_d^0 \to \pi^+ \pi^-) \propto \begin{pmatrix} e^{i\gamma} - de^{i\theta} \end{pmatrix} \]

\[A(B_s^0 \to K^+ K^-) \propto \begin{pmatrix} e^{i\gamma} + \left(\frac{1 - \lambda^2}{\lambda^2} \right) d'e^{i\theta'} \end{pmatrix} \]

\[d e^{i\theta} = \frac{\text{"penguin"}}{\text{"tree"}} \bigg|_{B_d \to \pi^+ \pi^-}, \quad d' e^{i\theta'} = \frac{\text{"penguin"}}{\text{"tree"}} \bigg|_{B_s \to K^+ K^-} \]

[d, d': real hadronic parameters; \(\theta, \theta' \): strong phases]

• General form of the CP asymmetries (time-dependent rate asymmetries):

\[A_{\text{CP}}^{\text{dir}}(B_d \to \pi^+ \pi^-) = G_1(d, \theta, \gamma), \quad A_{\text{CP}}^{\text{mix}}(B_d \to \pi^+ \pi^-) = G_2(d, \theta, \gamma, \phi_d) \]

\[A_{\text{CP}}^{\text{dir}}(B_s \to K^+ K^-) = G'_1(d', \theta', \gamma), \quad A_{\text{CP}}^{\text{mix}}(B_s \to K^+ K^-) = G'_2(d', \theta', \gamma, \phi_s) \]

• \(\phi_d = 2\beta \) (from \(B_d \to J/\psi K_S \)) and \(\phi_s \approx 0 \) are known parameters:

\[- A_{\text{CP}}^{\text{dir}}(B_d \to \pi^+ \pi^-) \quad \& \quad A_{\text{CP}}^{\text{mix}}(B_d \to \pi^+ \pi^-): \Rightarrow \boxed{d = d(\gamma)} \quad \text{(clean!)} \]

\[- A_{\text{CP}}^{\text{dir}}(B_s \to K^+ K^-) \quad \& \quad A_{\text{CP}}^{\text{mix}}(B_s \to K^+ K^-): \Rightarrow \boxed{d' = d'(\gamma)} \quad \text{(clean!)} \]
Example:

- Input parameter:
 - \(\phi_d = 43.4^\circ, \phi_s = -2^\circ, \gamma = 74^\circ, d = d' = 0.52, \theta = \theta' = 146^\circ \)

- CP asymmetries:
 - \(B_d \rightarrow \pi^+\pi^- \): \(A_{\text{dir}}^{\text{CP}} = -0.37, A_{\text{mix}}^{\text{CP}} = +0.50 \)
 - \(B_s \rightarrow K^+K^- \): \(A_{\text{dir}}^{\text{CP}} = +0.12, A_{\text{mix}}^{\text{CP}} = -0.19 \)
• The decays $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ are related to each other through the interchange of all down and strange quarks:

$$U\text{-spin symmetry} \Rightarrow d = d', \quad \theta = \theta'$$

- $d = d'$: ⇒ determination of γ, d, θ, θ'

- $\theta = \theta'$: ⇒ test of the U-spin symmetry!

• Detailed experimental feasibility studies show that the $B_s \to K^+K^-$, $B_d \to \pi^+\pi^-$ strategy is very promising for LHCb:

\[\text{CERN-LHCb/2003-123 & 124; talk by A. Sarti at Flavour LHC Workshop, October '06, CERN} \]
• **Recent news from the Tevatron:** [CDF Collaboration, hep-ex/0607021]

 Observation of $B_s \to K^+K^-$ @ CDF

 – 236 ± 32 events were seen, which correspond to the branching ratio

 $$\text{BR}(B_s \to K^+K^-) = (33 \pm 5.7 \pm 6.7) \times 10^{-6};$$

 update @ BEAUTY ’06: $\to (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$.

• **Theoretical prediction:** [Buras, R.F. Schwab & Recksiegel (’04)]

 – Requires the knowledge of an $SU(3)$-breaking form-factor ratio (which cancels in $de^{i\theta} = d'e^{i\theta'}$) [QCD sum rules: Khodjamirian et al. (’03)].

 – Dynamical assumptions (small annihilation) and $B_d \to \pi^\mp K^\pm$ data:

 $$\Rightarrow \text{BR}(B_s \to K^+K^-) = (35 \pm 7) \times 10^{-6}$$

 \Rightarrow good agreement!
The Rare Decays $B_q \rightarrow \mu^+\mu^- \ (q \in \{d, s\})$

- Originate from Z penguins and box diagrams in the Standard Model:

\[
\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \left[\frac{\alpha}{2\pi \sin^2 \Theta_W} \right] V_{tb}^* V_{tq} \eta_Y Y_0(x_t) (\bar{b}q)_{V-A} (\bar{\mu}\mu)_{V-A}
\]

- α: QED coupling; Θ_W: Weinberg angle.
- η_Y: short-distance QCD corrections (calculated ...)
- $Y_0(x_t \equiv m_t^2/M_W^2)$: Inami–Lim function, with top-quark dependence.

- Hadronic matrix element: \rightarrow very simple situation:

- Only the matrix element $\langle 0 | (\bar{b}q)_{V-A} | B_q^0 \rangle$ is required: f_{B_q}

\Rightarrow belong to the cleanest rare B decays!
Most recent SM predictions: [Blanke, Buras, Guadagnoli, Tarantino ('06)]

\[\text{use the data for the } \Delta M_q \text{ to reduce the hadronic uncertainties:} \]

\[
\begin{align*}
\text{BR}(B_s \rightarrow \mu^+ \mu^-) &= (3.35 \pm 0.32) \times 10^{-9} \\
\text{BR}(B_d \rightarrow \mu^+ \mu^-) &= (1.03 \pm 0.09) \times 10^{-10}
\end{align*}
\]

Most recent experimental upper bounds from the Tevatron:

- CDF collaboration @ 95% C.L.: [CDF Public Note 8176 (2006)]
 \[\text{BR}(B_s \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-7}, \quad \text{BR}(B_d \rightarrow \mu^+ \mu^-) < 3.0 \times 10^{-8} \]

- D0 collaboration @ 90% C.L. (95% C.L.): [D0note 5009-CONF (2006)]
 \[\text{BR}(B_s \rightarrow \mu^+ \mu^-) < 1.9 (2.3) \times 10^{-7} \]

\[\Rightarrow \text{still a long way to go (?) } \rightarrow \text{LHC} \quad \text{(background under study)} \]

However, NP may significantly enhance \(\text{BR}(B_s \rightarrow \mu^+ \mu^-) \):

- In SUSY scenarios: \(\text{BR} \sim (\tan \beta)^6 \rightarrow \text{dramatic enhancement (!!)}; \)
 [see, e.g., Foster et al. and Isidori & Paride ('06) for recent analyses]

- NP with modified EW penguin sector: sizeable enhancement.
The Rare Decay $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$

- **Key observable for NP searches:** Forward–Backward Asymmetry

$$A_{FB}(\hat{s}) = \frac{1}{d\Gamma/d\hat{s}} \left[\int_0^1 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} \, d(\cos \theta)} - \int_{-1}^0 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} \, d(\cos \theta)} \right]$$

- θ is the angle between the B^0_d momentum and that of the μ^+ in the dilepton centre-of-mass system,
- and $\hat{s} = s/M_B^2$, with $s = (p_{\mu^+} + p_{\mu^-})^2$.

- **Particularly interesting:**

$$A_{FB}(\hat{s}_0)_{SM} = 0$$
[Burdman ('98); Ali *et al.* ('00); ...]

- The value of \hat{s}_0 is very robust with respect to hadronic uncertainties!
- SUSY extensions of the SM:
 → may yield $A_{FB}(\hat{s})$ of opposite sign or without a zero point →
- **Sensitivity at the LHC:**
 - LHCb: ~ 4400 decays/year, yielding $\Delta \hat{s}_0 = 0.06$ after one year.
 - ATLAS will collect about 1000 $B^0 \rightarrow K^{*0} \mu^+\mu^-$ decays per year.
- **Other $b \rightarrow s\mu^+\mu^-$ decays under study:** $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$, $B_s^0 \rightarrow \phi\mu^+\mu^-$...
- **Current B-factory data:** inclusive $b \rightarrow s\ell^+\ell^-$ BRs and the integrated asymmetries $\int A_{FB}$ in accordance with SM, but still large uncertainties.

Conclusions and Outlook (I)

- Tremendous progress in B physics during the recent years:

 Fruitful interplay between theory and experiment

 - $e^+e^- B$ factories: have already produced $\sum \mathcal{O}(10^9) B\bar{B}$ pairs;
 - Tevatron: has recently succeeded in observing $B^0_s-\bar{B}^0_s$ mixing.

- Status in October 2006:

 - The data agree globally with the Kobayashi–Maskawa picture!
 - But we have also hints for discrepancies: \rightarrow first signals of NP??

- New perspectives for B-decay studies @ LHC \gg autumn 2007:

 - Large statistics and full exploitation of the B_s physics potential, thereby complementing the physics programme of the $e^+e^- B$ factories.
 - Precision determinations of γ: \rightarrow key ingredients for NP searches!
 - Powerful studies of rare decays: $B_{s,d} \rightarrow \mu^+\mu^-$, ...

 \rightarrow much more stringent CKM consistency tests!
Conclusions and Outlook (II)

Flavour physics & CP violation in direct context with LHC

- **Main goals of the ATLAS and CMS experiments:**
 - Exploration of the mechanism of EW symmetry breaking: Higgs!?
 - Production and observation of *new* particles ...
 - Then back to questions of dark matter, baryon asymmetry ...
 - ⊕ complementary and further studies at ILC/CLIC

- **Synergy with the flavour sector:**

 $B \oplus K, D$, top physics & lepton/neutrino sector

 - If discovery of new particles, which kind of new physics?
 - Insights into the corresponding new flavour structures and possible new sources of CP violation through studies of flavour processes.
 - Sensitivity on very high energy scales of new physics through precision measurements, also if NP particles cannot be produced at the LHC ...
