Charmless *B* Decays

Wolfgang Gradl For the BABAR and BELLE collaborations

The University of Edinburgh

Heavy Quark and Leptons 2006

Outline

Introduction

Charmless *B* decays The *B* factories

Constraining $\Delta S_f = S_f - \sin 2\beta$ $\sin 2\beta$ in $b \rightarrow q\bar{q}s$ penguins Constraining SM pollution

BF, CP And \mathcal{A}_{ch}

Measurements related to α/ϕ , $B \rightarrow \eta^{(')}K^{(*)}$ $B \rightarrow VV$ decays Other charmless *B* decays

All results preliminary unless journal reference given

W. Gradl (U. Edinburgh)

Charmless B Decays

Charmless hadronic B decays

- Contributing amplitudes: CKM suppressed trees, penguins,
- Can be used to study

. . .

- Interfering SM amplitudes
- CP violation
- Effects of new particles in loops (New Physics?)
- Perturbative calculations possible (QCD factorisation, pQCD, SCET)
- Constrain models

The *B* factories: BELLE and *BABAR*

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ Asymmetric beam energies

- KEK-B: 8 GeV $e^- \times 3.5$ GeV e^+
- $\mathcal{L}_{int} \approx 640 \, \text{fb}^{-1}$ so far

- ▶ PEP-II: 9 GeV $e^- \times 3.1$ GeV e^+
- $\mathcal{L}_{int} \approx 406 \, \text{fb}^{-1}$ so far

Measuring time-dependent CP asymmetries

Unitarity triangle

Unitarity of the CKM matrix: $V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$

Time-dependent CP asymmetry in B^0 - \overline{B}^0 mixing

$$\mathcal{A}_{cp}(\Delta t) = \frac{\Gamma(\bar{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to f) + \Gamma(B^0 \to f)}$$
$$= \frac{S_f \sin \Delta m_d \Delta t - C_f \cos \Delta m_d \Delta t}{S_f \sin \Delta m_d \Delta t - C_f \cos \Delta m_d \Delta t}$$

For example $B^0 \rightarrow J/\psi K_s^0$ ($b \rightarrow c\bar{c}s$): $S_{J/\psi K_s^0} = \sin 2\beta$, $C_{J/\psi K_s^0} = 0$

W. Gradl (U. Edinburgh)

Charmless B Decays

Constraining $\Delta S_f = S_f - \sin 2\beta$

$\sin 2\beta$ from $b \rightarrow q\overline{q}s$ penguins

- Measure CPV in b → s penguin dominated decays: S_f, C_f
- Standard model & penguin only:

 $S_f = \sin 2\beta$

- ► New Physics can show up in loops and modify *S*_f
- Sub-dominant standard model amplitudes introduce additional weak and strong phases
 ⇒ S_f ≠ sin 2β even without NP
- So, what is SM expectation for $\Delta S_c = S_c \sin 2\beta^2$
 - $\Delta S_f \equiv S_f \sin 2\beta?$
- Measuring related modes helps pin down expected deviations

Constraining SM pollution in $B^0 \rightarrow \phi K^0$

Constrain sub-dominant (V_{ub}) contributions to B⁰ → φK⁰_s via SU(3) flavour relations Grossman *et al.*, Phys. Rev. D 68:015004 (2003)

$$\begin{split} \Delta S_{\phi K_{S}^{0}} &\propto \quad \frac{1}{4} \mathcal{B}(\rho^{0} \pi^{0}) - \frac{1}{4} \mathcal{B}(\omega \pi^{0}) + \frac{1}{2} \sqrt{\frac{3}{2}} \left[c \mathcal{B}(\phi \eta) - s \mathcal{B}(\phi \eta') \right] \\ &+ \frac{\sqrt{3}}{4} \left[c \mathcal{B}(\omega \eta) - s \mathcal{B}(\omega \eta') \right] - \frac{\sqrt{3}}{4} \left[c \mathcal{B}(\rho^{0} \eta) - s \mathcal{B}(\rho^{0} \eta') \right] \\ &+ \frac{1}{2} \left[\mathcal{B}(\bar{K}^{*0} K^{0}) - \mathcal{B}(K^{*0} \bar{K}^{0}) \right] - \frac{1}{2\sqrt{2}} \mathcal{B}(\phi \pi^{0}) \end{split}$$

Search for $B^0 \rightarrow K^{*0}K^0_s$ BABAR, hep-ex/0606050, 208 fb⁻¹

Upper limit at 90% C.L.:

 $\mathcal{B}(\bar{K}^{*0}K^0) + \mathcal{B}(K^{*0}\bar{K}^0) < 1.9 \times 10^{-6}$

SU(3) upper bound $\Delta S_{\phi K^0} < 0.43$

Improved $\mathcal{B}(\phi\pi^0)$ BABAR, Phys. Rev. D **74**:011102, 211 fb $^{-1}$

Constraining SM pollution in $B^0 \rightarrow \eta' K^0$

- ► Constrain $\Delta S_{\eta'K_S^0}$ using flavour SU(3) and $B^0 \rightarrow \eta^{(\prime)}\pi^0$, $\eta'\eta$. Gronau *et al.*, Phys. Lett. B **596**, 107
- ► Expected \mathcal{B} in the ranges $0.2 1 \times 10^{-6} (\eta^{(\prime)} \pi^0)$ and $0.3-2 \times 10^{-6} (\eta^{\prime} \eta)$.

Upper limits at 90% CL:

 $\begin{array}{lll} \mathcal{B}(B^0 \to \eta \pi^0) &< 1.3 \times 10^{-6} \\ \mathcal{B}(B^0 \to \eta' \eta) &< 1.7 \times 10^{-6} \\ \mathcal{B}(B^0 \to \eta' \pi^0) &< 2.1 \times 10^{-6} \end{array}$

 $\mathcal{B}(\eta'\pi^0) = (2.79^{+1.02+0.25}_{-0.96-0.34}) \times 10^{-6}$

BABAR, 211 fb⁻¹ Phys. Rev. D **73**:071102 BELLE, Phys. Rev. Lett. 97:061802 (next slide)

- With new upper limits, expect −0.046 < S_{η'K⁰_S} < 0.094 Gronau *et al.*, hep-ex/0608085
- ▶ Also improvement for $\sin 2\alpha$ measured in $B^0 \rightarrow \pi^+\pi^-$

W. Gradl (U. Edinburgh)

Charmless B Decays

 $B \to \eta' \pi$

BELLE $386 \times 10^6 B\overline{B}$, Phys. Rev. Lett. **97**:061802

 $B^+ \to \eta' \pi^+$ $\mathcal{B} = (1.76^{+0.67+0.15}_{-0.62-0.14}) \times 10^{-6}$ $\mathcal{A}_{ch} = 0.20^{+0.37}_{-0.36} \pm 0.04$

 $\label{eq:basic} \begin{array}{l} \mbox{Previous BABAR:} \\ \mathcal{B}=(4.0\pm0.8\pm0.4)\times10^{-6} \\ \mbox{Phys. Rev. Lett. 95, 131803} \end{array}$

$$\begin{array}{l} B^0 \to \eta' \pi^0 \\ {\cal B} = (2.79^{+1.02+0.25}_{-0.96-0.34}) \times 10^{-6} \\ {\rm Significance \ 3.1 \ } \sigma \end{array}$$

BABAR: $<2.1\times10^{-6}$

Phys. Rev. D 73, 071102

 η'π⁺ clearly seen η'π⁰ not clear Search for $B \to K_s^0 K_s^0 K_L^0$

- Pure b → sss penguin, analoguous to B → K⁰_sK⁰_sK⁰_sK⁰_s
- Avoids SM pollution
- CP eigenstate
- Resonant \(\phi K_s^0\) contribution small, but non-resonant component may be large:

$$\mathcal{B} = (5.23^{+2.52+6.86+0.05}_{-1.96-2.53-0.06}) \times 10^{-6}$$
Cheng *et al.*, Phys. Rev. D **72**, 094003, using factorisation

- Experimentally difficult: $\epsilon \times \prod \mathcal{B}_i$ small
- Assuming uniform 3-body phase space, and excluding φ: UL at 90% CL:

 ${\cal B}(B^0 o K^0_{\scriptscriptstyle S} K^0_{\scriptscriptstyle S} K^0_{\scriptscriptstyle L}) < 7.4 imes 10^{-6}$ BABAR, 211 fb $^{-1}$, Phys. Rev. D **74**:032005

► Limited use for understanding CPV in $b \rightarrow q\bar{q}s$

CP asymmetries in $B \rightarrow \omega \pi/K$

• $b \rightarrow q\overline{q}s$, dominated by single penguin

- Expect
$$\Delta S_{\omega K^0} pprox 0.1$$
 and $\mathcal{A}_{ch} pprox 0$

Phys. Lett. B 620,143; Phys. Rev. D 72, 014006

BABAR:

	$B(10^{-6})$	\mathcal{A}_{ch}		
$B^+ \to \omega \pi^+$	$6.1\pm0.7\pm0.4$	$-0.01 \pm 0.10 \pm 0.01$		
$B^+ \to \omega K^+$	$6.1\pm0.6\pm0.4$	$0.05 \pm 0.09 \pm 0.01$		
$B^0 \to \omega K_S^0$	$6.2\pm1.0\pm0.4$	-		
ωK_S^0 , fix $C = 0$:	$S = 0.60_{-0.38}^{+0.42},$	$\Delta S = 0.12 \pm 0.40$		
211 fb ⁻¹ , Phys. Rev. D 74 :01106				

► BELLE:

	$B(10^{-6})$	\mathcal{A}_{ch}
$B^+ \to \omega \pi^+$	$6.9\pm0.6\pm0.5$	$-0.02 \pm 0.09 \pm 0.01$
$B^+ \to \omega K^+$	$8.1\pm0.6\pm0.6$	$0.05^{+0.08}_{-0.07} \pm 0.01$
$B^0 \rightarrow \omega K_S^0$	$4.4^{+0.8}_{-0.7}\pm0.4$	-
$B^0 ightarrow \omega \pi^{ m 0}$	< 2.0	-

 388×10^{6} $B\overline{B},$ hep-ex/0609022

Measurements related to α/ϕ_2

Updates on $B \rightarrow \rho \rho$

- ▶ Set of $B^0 \to \rho^0 \rho^0$, $\rho^+ \rho^-$ and $B^+ \to \rho^+ \rho^0$ to extract angle α/ϕ_2
- Updates for all Branching Fractions, CP asymmetries from both BABAR and BELLE
- See talk by Christos Touramanis on Wednesday morning

$B^0 \to a_1^{\pm}(1260) \, \pi^{\mp}$

- Can be used to extract α/φ₂ up to 4-fold ambiguity [Aleksan *et al.*, Nucl. Phys. B 361, 141]
- Sub-leading penguin amplitude with different weak phase dilutes α
- Can be overcome by exploiting symmetries:
 - Isospin [Gronau & London (1990)]
 - Approximate SU(3) flavour [Dighe, Gronau & Rosner (1998); Gronau & Zupan (2005)]

First step: measure branching fraction

Nice signal seen ($N_{
m sig}=421\pm48$) Assume $BR(a_1^+
ightarrow(3\pi)^+)=100\%$

$$\mathcal{B}(B^0 \to a_1^{\pm} \pi^{\mp}) = (33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$$

BABAR Phys. Rev. Lett. 97:051802

Next step: time dependent analysis

Charmless B Decays

Search for $B^0 \rightarrow a_1^+ \rho^-$

- ► $b \rightarrow u\bar{u}d$ transition: with sufficient statistics, could be used to measure α/ϕ_2
- ► $B \rightarrow 5\pi$ important background contribution for $B \rightarrow \rho\rho$ analyses
- Little known about this decay:

Theory: $\mathcal{B}(B^0 \to a_1^{\pm} \rho^{\mp}) \mathcal{B}(a_1^+ \to (3\pi)^+) = 43 \times 10^{-6}$ [Bauer *et al.*, Z. Phys. C **34**, 103 (1987)] using $|V_{ub}/V_{cb}| = 0.08$

Experiment:
$$\mathcal{B}(B^0 \to a_1^{\pm} \rho^{\mp}) < 3.4 \times 10^{-3}$$

[ARGUS, Phys. Lett. B **241**, 278 (1990), 214 pb⁻¹]

Assume $f_L = 1$ to get most conservative upper limit (90% C.L.):

$${\cal B}(B^0 o a_1^{\pm}\,
ho^{\mp}) {\cal B}(a_1^+ o (3\pi)^+) < 61 imes 10^{-6}$$

BABAR, 100 fb⁻¹, Phys. Rev. D **74**:031104

$B \to \eta^{(\prime)} K^{(*)}$

 $B \rightarrow \eta^{(\prime)} K^{(*)}$

- ▶ $\mathcal{B}(B \rightarrow \eta' K)$ found unexpectedly large (CLEO, 1997)
- Understood? Interference between two dominant penguin amplitudes [Lipkin 1991] plus enhancements from m_s, form factors, higher-order in α_s [Beneke & Neubert 2003]
- Predicts η K* large,
 η' K* small unless flavour singlet diagram important
- Important in light of measuring sin 2β in B⁰ → η'K⁰ [➡ G. Dubois-Felsmann]

 $B \rightarrow \eta' K$

►
$$B^+ \to \eta' K^+$$

 $\mathcal{B} = (69.2 \pm 2.2 \pm 3.7) \times 10^{-6}$
 $\mathcal{A}_{ch} = 0.028 \pm 0.028 \pm 0.021$

►
$$B^0 \to \eta' K^0$$

 $\mathcal{B} = (58.9^{+3.6}_{-3.5} \pm 4.3) \times 10^{-6}$

BELLE, $386 \times 10^6 B\overline{B}$, Phys. Rev. Lett. **97**, 061802

$$B \to \eta K^* / \rho$$

► $B \rightarrow \eta K^*(892), \eta \rho$

	$\mathcal{B}(10^{-6})$				
	BELLE BABAR				
	hep-ex/0608034	hep-ex/0608005			
$B^0 \rightarrow \eta K^{*0}$	$15.9 \pm 1.2 \pm 0.9$	$16.5 \pm 1.1 \pm 0.8$			
$B^+ \to \eta K^{*+}$	$19.7^{+2.0}_{-1.9}\pm1.4$	$18.9\pm1.8\pm1.3$			
$B^+ \to \eta \rho^+$	$4.1^{+1.4}_{-1.3}\pm0.34$				
$B^0 \to \eta \rho^0$	< 1.9				

- Confirm earliear measurements of ηK*
- Agree with predictions
- Direct CP asymmetries consistent with 0
- New: ηK₂^{*} and η(Kπ)₀^{*}
 (no predictions so far)

$B \to \eta' \, K^* / \rho$

Branching Fraction (10^{-6})					
Decay mode	Theoretical predictions		BABAR 211 fb $^{-1}$		
	50(3) liavour	QUD lact.	hep-ex/	0607109	
$B^0 \to \eta' K^{*0}$	$3.0^{+1.2}_{-0.3}$	$3.9^{+9.2}_{-5.1}$	$3.8\pm1.1\pm0.5$	(4.3σ)	
$B^+ \to \eta' K^{*+}$	$2.8^{+1.2}_{-0.3}$	$5.1^{+10.3}_{-\ 5.9}$	$4.9^{+1.9}_{-1.7}\pm0.8$	(3.6σ)	< 7.9
$B^0 o \eta' ho^0$	$0.07\substack{+0.10 \\ -0.05}$	$0.01\substack{+0.12 \\ -0.06}$	$0.4\substack{+1.2+1.6\\-0.9-0.6}$	(0.3 <i>σ</i>)	< 3.7
$B^+ \to \eta' \rho^+$	$4.9\substack{+0.7 \\ -0.7}$	$6.3^{+4.0}_{-3.3}$	$8.7^{+3.1}_{-2.8}{}^{+2.3}_{-1.3}$	(3.2σ)	< 14
$B^0 \to \eta' f_0(980)$	$\times \mathcal{B}(f_0 \to \pi^+ \pi^-)$	-)	$0.1^{+0.6+0.9}_{-0.4-0.4}$	(0.2 <i>σ</i>)	< 1.5
	Phys. Rev.	Nucl. Phys.			
	D 68,074012	B 675, 333			

- Predictions have large error, both compatible with measurements
- $\eta^{(\prime)} \rho^0$ likely to be very small
- Predicted pattern in η^(') K^(*) seen

Branching Ratio $\times 10^6$

W. Gradl (U. Edinburgh)

$B \rightarrow VV$ decays

Polarisation in $B \rightarrow VV$ decays

 Longitudinal polarisation fraction *f_L* in *VV* decays:

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}\cos\theta_1\,\mathrm{d}\cos\theta_2}$$

$$\propto \frac{1}{4}(1-f_L)\sin^2\theta_1\sin^2\theta_2 + f_L\cos^2\theta_1\cos^2\theta_2$$

- Helicity conservation arguments $\Rightarrow f_L \approx 1 \frac{m_v^2}{m_v^2}$
 - Valid for tree-dominated decays. Penguins? (factorisation?)
 - Experiment: ok for $\rho\rho$: $f_L \approx 0.95$
- $\rho\rho$, $\omega\rho$, $\omega\omega$ tree-dominated
- $\phi K^*, \rho K^*, \omega K^*$ penguin-dominated
 - Surprise: $f_L \approx 0.50$ for ϕK^*
 - What about ρK^* , ωK^* ?

Search for $B \rightarrow \omega V$ decays

 Polarisation large, as expected for tree-dominated decay

BABAR 211 fb⁻¹, Phys. Rev. D **74**:051102

Reasonable agreement with predictions [e.g. Ali *et al.*, Phys. Rev. D **60**,014005; Cheng & Yang, Phys. Lett. B **511**, 40]

 $B \rightarrow \rho K^*$

$$\begin{aligned} \mathcal{B}(\rho^+ K^{*0}) &= (9.6 \pm 1.7 \pm 1.5) \times 10^{-6} \\ f_L(\rho^+ K^{*0}) &= 0.52 \pm 0.10 \pm 0.04 \\ \mathcal{A}_{ch}(\rho^+ K^{*0}) &= -0.01 \pm 0.16 \pm 0.02 \end{aligned}$$

 $\begin{aligned} \mathcal{B}(\rho^0 K^{*0}) &= (5.6 \pm 0.9 \pm 1.3) \times 10^{-6} \\ f_L(\rho^0 K^{*0}) &= 0.57 \pm 0.09 \pm 0.08 \\ \mathcal{A}_{ch}(\rho^0 K^{*0}) &= 0.09 \pm 0.19 \pm 0.02 \end{aligned}$

BABAR, hep-ex/0607057

- Significant $K\pi$ S-wave component
- Better agreement with previous BELLE results (Phys. Rev. Lett. 95:141801)
- \blacktriangleright Polarisation ≈ 0.5 as expected for penguin-dominated

$B \rightarrow VV$ Polarisation

Other charmless *B* decays

New results on $B \rightarrow \pi\pi, K\pi, KK$

- Updated branching fractions
- ► Improved statistics asks for radiative corrections **BABAR** extracts non-radiative BF \mathcal{B}^0 : $\Gamma_{P_1P_2}^{incl}(E^{max}) = \Gamma(B \rightarrow P_1P_2 + n\gamma)|_{\sum E_{\gamma} < E^{max}} = \Gamma_{P_1P_2} + \Gamma_{P_1P_2} n\gamma(E^{max})$ $\Gamma_{P_1P_2}^{incl}(E^{max}) = \Gamma_{P_1P_2}^0 G_{P_1P_2}(E^{max})$ Baracchini, Isidori, Phys. Lett. B 633, 309

Mode	BELLE	BABAR			
	$B(10^{-6})$	$B(10^{-6})$	$B^{0}(10^{-6})$		
	hep-ex/0609015	hep-ex/0	0608003		
$\pi^+ \pi^-$	$5.1\pm0.2\pm0.2$	$5.4\pm0.4\pm0.3$	$5.8\pm0.4\pm0.3$		
$K^+ \pi^-$	$20.0 \pm 0.4^{+0.9}_{-0.8}$	$18.6\pm0.6\pm0.6$	$19.7\pm0.6\pm0.6$		
$K^+ K^-$		< 0.40	< 0.40		

New results on $B \rightarrow \pi \pi, K \pi, K K$

- Updated results for all BF
- ► $\bar{K}^0 K^0$ and $K^0 K^+$ have statistical significance > 5 σ
 - $b \rightarrow d$ hadronic penguins finally observed!

Mode	BABAR	BELLE
	$\mathcal{B}(10^{-6})$	$\mathcal{B}(10^{-6})$
$B^0 o \pi^0 \pi^0$	$1.48 \pm 0.26 \pm 0.12$	$2.3^{+0.4+0.2}_{-0.5-0.3}$
$B^+ \to \pi^+ \pi^0$	$5.12 \pm 0.47 \pm 0.29$	$6.6\pm0.4^{+0.4}_{-0.5}$
$B^{\pm} \to K^{\pm} \pi^0$	$13.3 \pm 0.56 \pm 0.64$	$12.4\pm0.5^{+0.7}_{-0.6}$
$B^+ \to K^0 \pi^+$	$23.9 \pm 1.1 \pm 1.0$	$22.9^{+0.8}_{-0.7}\pm1.3$
$B^+ \to \overline{K}{}^0 K^+$	$1.61 \pm 0.44 \pm 0.09$	$1.22^{+0.33+0.13}_{-0.28-0.16}$
$B^0 \to \overline{K}{}^0 K^0$	$1.08 \pm 0.28 \pm 0.11$	$0.86^{+0.24}_{-0.21}\pm0.09$
$B^0 \to K^0_s \pi^0$	$10.5\pm0.7\pm0.5$	$9.2^{+0.7\pm0.6}_{-0.6-0.7}$
	hep-ex/0607106	Phys. Rev. Lett. 94, 180803
	hep-ex/0608036	hep-ex/0608049
	hep-ex/0607096	hep-ex/0609015

Time-dependent CP violation in $B^0 \to K^0 \overline{K}^0$

- Pure b → dss̄ penguin
 New window for CPV in penguin decays
- Allows estimate of penguin contribution in B⁰ → ππ via flavour SU(3)
- Direct CP asymmetry expected to be zero
- Measured as $B^0 \rightarrow K^0_s K^0_s$

 $S = -1.28^{+0.80+0.11}_{-0.73-0.16}$ $C = -0.40 \pm 0.41 \pm 0.06$

BABAR, hep-ex/0608036

Dalitz plot analysis of $B^+ \rightarrow K^+ K^+ K^-$

- Full Dalitz plot analysis, measure amplitudes and relative phases
- Fit B^+ and B^- separately for A_{ch}

 $\mathcal{B}(B^+ \to K^+ K^+ K^-) = (35.2 \pm 0.9 \pm 1.6) \times 10^{-6}$

Comp.	ρ	ϕ (rad)	F(%)	$F \times \mathcal{B}(B^{\pm} \rightarrow K^{\pm}K^{\pm}K^{\mp})$	A	$(A_{\min}, A_{\max})_{90\%}$	$\delta \phi \text{ (rad)}$
$\phi(1020)$	1.66 ± 0.06	$2.99 \pm 0.20 \pm 0.06$	$11.8 \pm 0.9 \pm 0.8$	$(4.14 \pm 0.32 \pm 0.33) \times 10^{-6}$	$0.00 \pm 0.08 \pm 0.02$	(-0.14, 0.14)	$-0.67 \pm 0.28 \pm 0.05$
$f_0(980)$	5.2 ± 1.0	$0.48 \pm 0.16 \pm 0.08$	$19 \pm 7 \pm 4$	$(6.5 \pm 2.5 \pm 1.6) \times 10^{-6}$	$-0.31\pm0.25\pm0.08$	(-0.72, 0.12)	$-0.20 \pm 0.16 \pm 0.04$
$X_0(1550)$	8.2 ± 1.1	$1.29 \pm 0.10 \pm 0.04$	$121 \pm 19 \pm 6$	$(4.3 \pm 0.6 \pm 0.3) \times 10^{-5}$	$-0.04\pm0.07\pm0.02$	(-0.17, 0.09)	$0.02 \pm 0.15 \pm 0.05$
$f_0(1710)$	1.22 ± 0.34	$-0.59\pm0.25\pm0.11$	$4.8 \pm 2.7 \pm 0.8$	$(1.7 \pm 1.0 \pm 0.3) \times 10^{-6}$	$0.0 \pm 0.5 \pm 0.1$	(-0.66, 0.74)	$-0.07 \pm 0.38 \pm 0.08$
χ^{I}_{c0}	0.437 ± 0.039	$-1.02\pm0.23\pm0.10$	$3.1 \pm 0.6 \pm 0.2$	$(1.10 \pm 0.20 \pm 0.09) \times 10^{-6}$	$0.19 \pm 0.18 \pm 0.05$	(-0.09, 0.47)	$0.7 \pm 0.5 \pm 0.2$
χ_{c0}^{II}	0.604 ± 0.034	0.29 ± 0.20	6.0 ± 0.7	$(2.10 \pm 0.24) \times 10^{-6}$	-0.03 ± 0.28	-	-0.4 ± 1.3
NR	13.2 ± 1.4	0	$141 \pm 16 \pm 9$	$(5.0 \pm 0.6 \pm 0.4) \times 10^{-5}$	$0.02 \pm 0.08 \pm 0.04$	(-0.14, 0.18)	0

Non-resonant component not flat across DP

Dalitz plot analysis of $B^+ \rightarrow K^+ K^+ K^-$

Search for $B \to \eta' \eta' K$

- Motivation:
 - Large $\mathcal{B}(B \to \eta' K)$
 - ► CP violation in $B \to P^0 P^0 Q^0$ [Gershon & Hazumi, 2004], e.g. observation of $B^0 \to K_s^0 K_s^0 K_s^0$

[BELLE, Phys. Rev. D 69, 012001 , BABAR, Phys. Rev. Lett. 95, 011810]

Results (@ 90% CL):

Charmless B Decays

$B \rightarrow \phi \phi K$

- $b \rightarrow s\bar{s}s$ with additional $s\bar{s}$ pair
- Direct CPV could be enhanced in interference between non-SM decays and decays via η_c
- BELLE, hep-ex/0609016
 Search for charmless decays by reqiring m_{φφ} below charm threshold

$$m_{\phi\phi} < 2.85 \, \text{GeV}/c^2$$

Charmlana	Mode	Yields	Σ	$B(10^{-6})$
$\mathcal{A}_{ch} = 0.01^{+0.19}_{-0.16} \pm 0.02$	$B^\pm \to \phi \phi K^\pm~(M_{\phi \phi} < 2.85~{\rm GeV}/c^2)$	$34.2^{+6.4}_{-5.8}$	9.5	$3.2^{+0.6}_{-0.5}\pm0.3$
	$B^0 \rightarrow \phi \phi K^0 \ (M_{\phi \phi} < 2.85 \ {\rm GeV}/c^2)$	$7.3^{+3.0}_{-2.4}$	4.7	$2.3^{+1.0}_{-0.7} \pm 0.2$
	$B^{\pm} \rightarrow \eta_c K^{\pm}, \eta_c \rightarrow \phi \phi$	$29.7^{+6.8}_{-5.5}$	7.2	$2.4^{+0.6}_{-0.5} \pm 0.2$
	$B^{\pm} \rightarrow \eta_c K^{\pm}, \eta_c \rightarrow \phi K^+ K^-$	$76.8^{+13.6}_{-12.4}$	9.4	$3.5\pm0.6\pm0.3$
$\eta_c K^+$:	$B^{\pm} \rightarrow \eta_c K^{\pm}, \eta_c \rightarrow 2(K^+K^-)$	$104.6^{+20.2}_{-17.3}$	10.2	$2.4^{+0.5}_{-0.4}\pm0.2$
$\mathcal{A}_{ch} = 0.15^{+0.16}_{-0.17} \pm 0.02$	$B^{\pm} \rightarrow J/\psi K^{\pm}, J/\psi \rightarrow \phi K^+ K^-$	$25.5^{+7.0}_{-6.0}$	8.5	$1.2\pm0.3\pm0.1$
	$B^{\pm} \rightarrow J/\psi K^{\pm}, J/\psi \rightarrow 2(K^+K^-)$	$41.0^{+7.3}_{-6.6}$	9.7	$0.97^{+0.17}_{-0.16} \pm 0.1$

Summary

- Many new and updated results from both B factories
- Impressive agreement between BELLE and BABAR
- Rare charmless *B* decays help to improve understanding of Standard Model amplitudes
- More and more precise results to come with more data

Backup Slides

Detecting a signal

- Largest backgrounds from $e^+e^- \rightarrow q\overline{q}$
- Kinematic variables:

Event shape for background suppression:

