New Results on Ξ^0 Hyperon Decays

Rainer Wanke

Institut für Physik, Universität Mainz

Heavy Quarks & Leptons 2006

Munich, October 16, 2006

Introduction

Why investigate Hyperons?

- Understanding of SU(3)_f symmetry and symmetry breaking.
- Possible |V_{us}| measurement, complementary to kaons.
- Deeper understanding of baryon structure and decays.

Many new data on neutral hyperons!

- Most previous data were still from the 60's and 70's.
- \blacksquare A and Ξ^0 have similar lifetimes & decay lengths than K_S mesons.
 - ⇒ Recent high statistics kaon experiments provide large samples of neutral hyperons!
- **This talk:** New results on Ξ^0 decays from NA48/1 and KTeV.

Overview

K_S and Ξ^0 Decays: The NA48/1 Experiment at CERN

Data taking in 2002: (NA48/1 experiment)

- **Purpose:** Measurement of very rare K_S decays and neutral Hyperon decays.
- Neutral beam with target close decay region. (K_S target from ϵ'/ϵ measurement, but $200 \times$ intensity.)
- Total statistics: K_S flux: $\sim 3.5 \times 10^{10}$

 Ξ^0 flux: $\sim 2.4 \times 10^9$ in the decay region.

The NA48 Detector

 $\Delta E/E \approx 1.0\%$ for $E_{e,\gamma} = 20$ GeV/c.

Hadron calorimeter, photon vetos, muon counters

Ξ^0 Beta Decay

$\mathbf{\Xi^0} ightarrow \Sigma^+ e^- \overline{ u}_{\mathbf{e}}$ decay:

- **\Xi^0 hyperon** (*uss*) strange partner of the neutron (*udd*).
 - $\implies \Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e \text{ decay}$ similar to neutron β -decay.

 \implies Determination of $|V_{us}|$ possible!

Decay rate:

$$\Gamma = \frac{\mathsf{Br}(\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e)}{\tau_{\Xi^0}} \approx G_F^2 |V_{us}|^2 \frac{\Delta m^5}{60\pi^3} [(1 - \frac{3}{2}\beta)(|f_1|^2 + 3|g_1|^2)]$$
$$(\Delta m = m_{\Xi^0} - m_{\Sigma^+}, \beta = \frac{\Delta m}{m_{\Xi^0}})$$

Form factors f_1, g_1, \ldots = neutron form factors in $SU(3)_f$ symmetry.

Only one published measurement (KTeV, 1999) with 176 events. (+ preliminary result with 626 events.)

Ξ^0 Beta Decay: Event Selection

Reconstruct Σ^+ by its decay to $p\pi^0$.

Require an additional electron (E/p > 0.9).

■ Ξ^0 beta decay is only source of Σ^+ in neutral beam.

6316 candidates

Background:
 ≈ 140 events (2.2%)
 (estimated from mass side-bands.)

Ξ^0 Beta Decay:

Monte Carlo Simulation

Monte Carlo simulation:

Experimental challenge of Hyperon decays:

Leading proton takes most of the original hyperon momentum.

- \implies Proton line-of-flight very close to the beam pipe.
- \implies Low acceptances, high sensitivity to detector geometry.
- Monte Carlo simulation elaborately tuned to correct detector geometry and inefficiencies.

Ξ^0 Beta Decay: Result

NA48/1 result on 6316 $\Xi^0 \beta$ -decay candidates:

 $\mathsf{Br}(\Xi^0 o \Sigma^+ e^- ar{
u}) = (2.51 \pm 0.03_{\mathsf{stat}} \pm 0.09_{\mathsf{syst}}) imes 10^{-4}$

Systematics:	Source	$\sigma_{\sf syst}/{\sf Br}$
	Trigger efficiency	$\pm 2.2\%$
	Detector acceptance	$\pm 1.0\%$
	Ξ^0 form factors g_1 , f_2	$\pm 1.6\%$
	Ξ^0 polarization	$\pm 1.0\%$
	Normalization	$\pm 1.0\%$
	Others (MC stat., bkg., $ au_{\Xi^0}$)	$\pm 1.0\%$
	Total systematics	$\pm 3.4\%$

• Measured also $\overline{\Xi^0} \beta$ -decay: (555 events)

 $\implies \mathsf{Br}(\overline{\Xi^0} \rightarrow \overline{\Sigma^+} e^+ \nu) = (\mathbf{2.55} \pm \mathbf{0.12}_{\mathsf{stat}} \pm \mathbf{0.10}_{\mathsf{syst}}) \times \mathbf{10^{-4}}$

$|V_{us}|$ from Ξ^0 Beta Decay

Use Ξ^0 lifetime (PDG06) for computation of decay rate:

 $\Gamma(\Xi^0 \to \Sigma^+ e^- \nu) = (8.66 \pm 0.31_{\rm exp} \pm 0.27_{\Xi^0 \text{ lifetime}}) \times 10^5 \text{ s}^{-1}$

For $|V_{us}| \cdot f_1(0)$ have to use form factors as input: KTeV, 2001 (494 events): $g_1/f_1 = 1.32^{+0.22}_{-0.18}$, $f_2/f_1 = 2.0 \pm 1.3$ (And assume $SU(3)_f$ symmetry for f_1 .)

 $\implies |\mathbf{V_{us}}| \ = \ 0.209 \ \pm \ 0.005_{\text{exp}} \ \overset{+0.022}{_{-0.028}}_{\text{form factors}}$

 \implies Good agreement with $|V_{us}| = 0.2257 \pm 0.0021$ from Kaon decays, but uncertainty from form factors still large.

Turn it around instead: Determination of g_1/f_1 using $|V_{us}|!$

 $\implies \mathbf{g_1}/\mathbf{f_1} = 1.20 \pm 0.04_{\text{exp}} \pm 0.03_{\text{ext}}$

(Compare with $g_1/f_1 = 1.267$ neutron decay + SU(3) symmetry!)

$$\Xi^0 \to \Sigma^+ \mu^- \nu$$

Semimuonic decay
$$\Xi^{0} \rightarrow \Sigma^{+} \mu^{-} \nu_{\mu}$$
:
Phase-space suppressed,
prediction:
 $\operatorname{Br} \approx \frac{1}{114} \times \operatorname{Br}(\Xi^{0} \rightarrow \Sigma^{+} e^{-} \nu)$
 $\approx 2.2 \times 10^{-6}$

First observation: KTeV, 2005

8 signal events (negligible bkg).

 ${\rm Br} = (4.7^{+2.0}_{-1.4}\pm 0.8)\times 10^{-6}$

NA48/1, preliminary: 99 signal events (\approx 30 bkg events). Br = $(2.2 \pm 0.3 \pm 0.2) \times 10^{-6}$

<u>Ξ⁰ Lifetime:</u>

- Important input for other measurements (e.g. $|V_{us}|$ from $\Xi^0 \beta$ -decays).
- Currently known to less than 3% accuracy:

 $\tau_{\Xi^0}(\mathsf{PDG}) = (2.90 \pm 0.09) \times 10^{-10} \text{ s}$

Last measurement almost 30 years old!

NA48/1 Measurement:

Use $\Xi^0 \rightarrow \Lambda \pi^0$ events taken with minimum bias trigger (downscaled by 100).

> ⇒ ~ 260 000 events (virtually background-free)

Fit in separate energy bins.

 \implies No spectrum dependency.

- Fit region well separated from collimator position.
 - No effects from detector resolution.

Fit region: $\Xi^{0} \rightarrow \Lambda \pi^{0}$ fit region 180 258134 events 160 133293 fitted Ξ^0 energy / GeV 140 120 100 80 60₀ 5 2 3 4 6 Ξ^{0} lifetime / $\,\tau_{_{PDG}}$

Rainer Wanke, Universität Mainz, Heavy Quarks & Leptons 2006, Munich, October 16, 2006 – p.14/22

Data/MC agreement in single energy bins:

⇒ About 2σ above PDG 2004 average, and five times more precise. NA48/1 measurement of $\Xi^0 \beta$ -decay: Br = $(2.51 \pm 0.09) \times 10^{-4} \text{ s}^{-1}$

Use **new** Ξ^0 **lifetime** for decay rate:

(preliminary)

$$\begin{split} & \Gamma(\Xi^0 \to \Sigma^+ e^- \nu) \\ &= (8.14 \pm 0.29_{\text{exp}} \pm 0.05_{\tau(\Xi^0)}) \cdot 10^5 \text{ s}^{-1} \end{split}$$

Same computation as before... (preliminary) $\implies |V_{us}| = 0.203 \pm 0.004_{exp} \stackrel{+0.22}{_{-0.27 \text{ form factors}}}$

Outlook: Measurement of g_1/f_1 from same data sample.

Weak Radiative Hyperon Decays: $(\Xi^0 o \Lambda \gamma, \Xi^0 o \Sigma^0 \gamma, \dots)$

All interactions (weak, strong, e.m.) involved.

Several competing theoretical models (pole models, quark models, VMD, ...)

Decay Asymmetry in Hyperon Decays:

Asymmetry α :

Interference of *s*-wave (P conserving) and *p*-wave (P violating) amplitudes.

Very different theoretical predictions for decay asymmetries:

$$\frac{dN}{\cos\Theta} = N_0 (1 + \alpha |\vec{P_{\Xi^0}}| \cos\Theta)$$

$$\alpha = \frac{2\operatorname{\mathsf{Re}}(\mathbf{A_s}\,\mathbf{A_p^\star})}{|\mathbf{A_s}|^2 + |\mathbf{A_p^\star}|^2}$$

$\Xi^0 \rightarrow \Lambda \gamma$ Decay Asymmetry

 $\Xi^{0} \rightarrow \Lambda \gamma$ from NA48/1: 43814 decay candidates.

Background: 0.8% ($\Xi^0 \rightarrow \Lambda \pi^0$, accid. overlaps)

Fit result: $\alpha_{\Xi^0 \to \Lambda\gamma} \cdot \alpha_{\Lambda \to p\pi} = -0.439 \pm 0.013_{\text{stat}} \pm 0.038_{\text{syst}}$ (Systematics mainly from energy dependence, trigger efficiency.)

■ Use
$$\alpha_{\Lambda \to p\pi} = 0.642 \pm 0.013$$
 [PDG]: (NA48/1 preliminary)
 $\alpha_{\Xi^0 \to \Lambda\gamma} = -0.684 \pm 0.020_{\text{stat}} \pm 0.061_{\text{syst}}$

(Previous measurement: $\alpha = -0.78 \pm 0.19$ [NA48, 2003])

$\Xi^0 \rightarrow \Sigma^0 \gamma$ Decay Asymmetry

 $\Xi^{0} \rightarrow \Sigma^{0} \gamma$ from NA48/1: 13068 decay candidates.

Background: $\approx 3\%$ (Mainly $\Xi^0 \rightarrow \Lambda \pi^0$)

Fit result: $\alpha_{\Xi^0 \to \Sigma^0 \gamma} \cdot \alpha_{\Lambda \to p\pi} = -0.438 \pm 0.020_{\text{stat}} \pm 0.041_{\text{syst}}$ (Again systematics mainly from energy dependence, trigger efficiency.)

■ Use $\alpha_{\Lambda \to p\pi} = 0.642 \pm 0.013$ [PDG]: (NA48/1 preliminary) $\alpha_{\Xi^0 \to \Sigma^0 \gamma} = -0.682 \pm 0.031_{\text{stat}} \pm 0.065_{\text{syst}}$

(Previous measurement: $\alpha = -0.63 \pm 0.09$ [KTeV, 2001])

Summary

NA48/1 result on 6316 $\Xi^0 \beta$ -decay events:

 ${\sf Br}(\Xi^0 o \Sigma^+ e^- ar{
u}) = (2.51 \pm 0.03_{
m stat} \pm 0.09_{
m syst}) imes 10^{-4}$

First observations of $\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}$ by **KTeV** and **NA48/1**.

New very precise NA48/1 measurement of the Ξ^0 lifetime:

 $egin{array}{c} au_{oldsymbol{\Xi}^{oldsymbol{0}}} = (\mathbf{3.082} \pm \mathbf{0.013} \pm \mathbf{0.012}) \cdot \mathbf{10^{-10}} \; \mathsf{s} \end{array}$ (

(prel.)

(prel.)

Use beta decay and lifetime results for $|V_{us}|$:

 $|V_{us}|~=~0.203~\pm~0.005_{ ext{exp}}~^{+0.22}_{-0.27~ ext{form factors}}$

Precise measurements of $\Xi^0 \to \Lambda / \Sigma^0 \gamma$ decay asymmetries:

 $\begin{array}{lll} \alpha_{\Xi^{0} \to \Lambda \gamma} &=& -0.684 \pm 0.020_{\text{stat}} \pm 0.061_{\text{syst}} \\ \alpha_{\Xi^{0} \to \Sigma^{0} \gamma} &=& -0.682 \pm 0.031_{\text{stat}} \pm 0.065_{\text{syst}} \end{array} \tag{prel.}$