B_s Lifetime Difference and Mixing @ the Tevatron

Stephanie Menzemer

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

Munich, 17^{th} of October 2006

Tevatron

 $p\bar{p}$ collisions at \sqrt{s} = 1.96 TeV observed by two experiments CDF & D0

B Physics @ Hadron Colliders

- + Large cross section $\sigma(p\bar{p} \to bX) \approx 100 \ \mu b$ $\leftrightarrow B$ factories: \approx 1 nb + High center-of-mass energy + Heavy & excited B's, e.g. B_s , B_c , Λ_b , Ξ_b , B^{**} , B_s^{**} , ...
- $\sigma(p\bar{p} \rightarrow X)$ O(10³) higher \rightarrow require excellent trigger
- High track density
 - \rightarrow require dedicated algorithms

Tevatron unique place to study large amounts of B_s Mesons.

Selected B_s Topics

Many exciting B analysis going on at the Tevatron today ...

- $\Delta \Gamma_s$ and CP violation
- $B_s \bar{B_s}$ oscillations

for more Tevatron B physics results see:

- *B* Lifetimes, CP Violation and Rare Decays (Monday, 16th of October; Cano Ay)
- Spectroscopy and Decays of *B* Hadrons (Thursday, 19th of October; Manfred Paulini)

$\Delta\Gamma_s$ and CP violation

Different Approaches to $\Delta\Gamma_s$

 $\Delta\Gamma_s$: decay-width difference between heavy (CP odd) and light (CP even) mass eigenstate:

$$\begin{split} \Delta\Gamma_s &= \Delta\Gamma_s^{SM,CP} \times \cos(\phi_s^{SM} + \phi_s^{NP}); \quad \phi_s^{SM} \approx 0.0\\ &(\frac{\Delta\Gamma_s}{\Delta m_s} \approx \frac{3}{2}\pi \frac{m_b^2}{m_t^2} = 3.7^{+0.8}_{-1.5} 10^{-3}) \end{split}$$

Many orthogonal measurements ongoing:

- Directly measure lifetimes in $B_s \to J/\psi\phi$ separate CP states by angular distribution, measure lifetimes
- Measure lifetime in $B_s \to K^+K^-$ (*CP* even); compare to PDG lifetime for flavor specific states (see Cano Ay's talk)
- Measure BR($B_s \rightarrow D_s^{(*)} D_s^{(*)}$) $\propto \Delta \Gamma_s / \Gamma_s$, (*CP* even);

account for most of lifetime difference (see Manfred Paulini's talk)

• Measure time-integrated untagged decay rate asymmetry $A^s_{SL} = \frac{\Delta\Gamma_s}{\Delta m_s}\tan(\phi_s)~(\text{see Cano Ay's talk})$

D0: $\Delta\Gamma_s$ via $B_s ightarrow J/\psi \phi$

 $B_s
ightarrow J/\psi \phi$: Pseudoscalar ightarrow Vector Vector decay

Simultaneous fit for angular distributions and short and long B_s lifetime

 A_0 : S + D wave \rightarrow P even A_{\parallel} : S + D wave \rightarrow P even A_{\perp} : P wave \rightarrow P odd

without CP violation: $B_{s,Short,Light} \rightarrow CP$ even $B_{s,Long,Heavy} \rightarrow CP$ odd

 $\mathcal{L} = 1 \text{ fb}^{-1}$

D0: Results on $\Delta\Gamma_s$

Assuming no CP violation:

 $\Delta\Gamma_s$ = 0.12 \pm 0.08 \pm 0.03 ps⁻¹ Non 0 $\Delta\Gamma_s$!

Putting all measurements together ...

D0: $\Delta\Gamma_s$ CP Violation Results

• Allowing for CP violation $\Delta\Gamma_s = \Delta\Gamma_s^{SM,CP} \times \cos(\phi_s)$

 $\Delta \Gamma_s$ = 0.17 ± 0.09 ± 0.03 ps⁻¹ ϕ_s = -0.79 ± 0.56 ± 0.01

• Combine with time-integrated search for CP violation in untagged $B_s \rightarrow D_s(\phi \pi) \mu X$ decays

 $\Delta \Gamma_s$ = 0.15 ± 0.08 ± 0.03 ps⁻¹ ϕ_s = -0.56 ± 0.40 ± 0.01

• Consistent with SM (U. Nierste hep-ph/0406300) $\Delta \Gamma_s = 0.10 \pm 0.03 \text{ ps}^{-1}; \phi_s = -0.03 \pm 0.005$

$B_s-\bar{B_s}$ Mixing

- First double sided limit on Δm_s (D0) (Phys. Rev. Lett. 97 (2006) 021802)
- First precision measurement of Δm_s (CDF) (Phys. Rev. Lett. 97, (2006) 062003)
- Observation of Δm_s (CDF) (hep-ex/0609040)

Motivation

Access to fundamental SM parameters

$$\Delta m_s = \frac{G_F^2 M_W^2 \eta S(m_t^2/m_W^2)}{6\pi^2} m_{B_s} f_{B_{B_s}}^2 |V_{ts}^* V_{tb}|^2$$

• Hadronic uncertainties cancel in ratio:

Δm_s _	$m_{B_s} \epsilon^2$	$ V_{ts} ^2$
Δm_d –	$\overline{m_{B_d}}\varsigma$	$ V_{td} ^2$

improved lattice (Okamoto, Lattice 05): $\xi = 1.21 \stackrel{+0.047}{_{-0.035}}$

- Prerequisite for time dependent CPV
- New Physics may affect $\Delta m_s/\Delta m_d$ E.g. new particles in loop, ...

$B_s^0 - B_s^0$ Mixing Analysis

- 2) Measurement of proper decay time ct & ct resolution
- 3) Flavor tagging (main challenge at hadron colliders)

Time dependent asymmetry measurement:

 $\mathcal{A}(t) \equiv \frac{N(t)_{unmixed} - N(t)_{mixed}}{N(t)_{unmixed} + N(t)_{mixed}} = \mathcal{D}\cos(\Delta m_s t), \quad \mathcal{D} = 1 - 2P_{mistag}$

Why is it so difficult?

B_s Mixing is very very fast! B_d mixing $\Delta m_d = 0.5 \text{ ps}^{-1}$ $B_s mixing \Delta m_s = 20 \text{ ps}^{-1}$ Mixed Asymmetry **Challenges:** Large statistics High vertex resolution High momentum resolution Good tagging Very complex analysis! 2.5 5 $\mathbf{0}$ 7.5 10 proper decay time, t [ps]

For high Δm_s , $\sigma(ct)$ is crucial: significance = $\sqrt{\frac{S\epsilon D^2}{2}}\sqrt{\frac{S}{S+B}}e^{-\frac{(\Delta m_s\sigma_{ct})^2}{2}}$

Signal Reconstruction

$$\sqrt{\frac{S\epsilon D^2}{2}}\sqrt{\frac{S}{S+B}}e^{-\frac{(\Delta m_s\sigma_{ct})^2}{2}}$$

Hadronic B_s Modes (CDF)

Hadronic Modes selected by Two Track Trigger

- 2000 fully reconstructed $B_s \rightarrow D_s(\phi \pi) \pi$ (golden mode)
- 3200 partially reconstructed

 $B_s \to D^*_s(\phi\pi)\pi$ and $B_s \to D^*_s(\phi\pi)\rho$ decays

slightly worse ct resolution due to lost γ or π^0

• 3600 fully reconstructed B_s candidates in add. modes

decay	#
$B_s \to D_s(K^*K)\pi$	1400
$B_s \to D_s(3\pi)\pi$	700
$B_s \to D_s(\phi \pi) 3\pi$	700
$B_s \to D_s(K^*K)3\pi$	600
$B_s \to D_s(3\pi)3\pi$	200

NN for candiate selection

$B_s ightarrow \ell D_s X$ Decays (CDF)

 \sim 61.500 semileptonic B_s candidates

High statistic, but worse ct-resolution:

$$ct = \frac{L_{xy}}{\gamma\beta} = \frac{L_{xy}M(B)}{p_T(B)} = \frac{L_{xy}M(B)}{p_T(\ell D)} * \frac{K}{K} \text{ (K from Monte Carlo);}$$
$$\sigma_{ct} = \sqrt{\left(\frac{\sigma_{Lxy}}{\gamma\beta}\right)^2 + \left(\frac{\sigma_{\gamma\beta}}{\gamma\beta} * ct\right)^2}$$

Sensitivity driven by high ℓD mass candidates \rightarrow exploit in the fit

B_s Decays (D0)

Large statistic in semi-muonic decays

Plan: trigger muon as opposite side tag + fully reconstructed B_s candidate on the other side

Proper Decay Time Resolution

$$\sqrt{\frac{S\epsilon D^2}{2}}\sqrt{\frac{S}{S+B}}e^{-\frac{(\Delta m_s \sigma_{ct})^2}{2}}$$

Proper Time Resolution

Critical aspect of the analysis, limiting factor at high Δm_s

 σ_{ct} is determined from data

CDF: prompt D + track(s) mimics B decay topology

+ exploit event-by-event predicted resolution, take into account dependence on several variables: isolation, vertex χ^2 , ...

D0: prompt J/Ψ

* Add. silicon layer currently being commissioned

Flavor Tagging

 $\sqrt{\frac{S\epsilon D^2}{2}} \sqrt{\frac{S}{S+B}} e^{-\frac{(\Delta m_s \sigma_{ct})^2}{2}}$

Opposite Side Tagging

B mesons produced in pairs \rightarrow production flavors correlated

- Jet Charge Tagging (high efficiency, low purity)
 Weighted sum of fragmentation and decay tracks of the opposite side B
- Lepton Tagging (high purity, low efficiency) Semileptonic decay of opposite side B($\approx 20\% B$'s mix before the decay)
- Kaon Tagging (high efficiency, low purity) Favored transition: $b \rightarrow c \rightarrow s$

Often opposite side B not in detector acceptance Additional gain in tagging performance:

- + Classification of events (dilution parameterization)
- + Combination of all opposite side tagging information

OST in B^+ & B_d

- Important test of the fitter (complex unbinned likelihood fit)
- Calibration of opposite side taggers (opposite side *B* independent of signal side)

Same Side Tagger @ CDF

- Charge of closest fragmentation track correlated to B production flavor
- SSKT performance can NOT be determined on data Understanding of Monte Carlo (PYTHIA) crucial!

Final algorithm: NN combination of kaon probability and kinematical variables ϵD^2 (hadronic modes) = 3.5 %; ϵD^2 (semileptonic modes) = 4.8 %

Tagging performance enlarged by imes 3-4!

Analysis Methods & Results

Fourier Analysis

Two domains to fit for oscillation:

Time domain:

• Fit for Δm_s in $P(t) \sim (1 \pm D \cos \Delta m_s t)$

Frequency domain: amplitude scan

- Introduce amplitude: $P(t) \sim (1 \pm AD \cos \Delta m_s t)$
- Fit for \mathcal{A} at different Δm_s
- \Rightarrow Obtain frequency spectrum
 - True $\Delta m_s \Rightarrow \mathcal{A} = 1$, else $\mathcal{A} = 0$
 - Traditionally used for B_s mixing search
- \Rightarrow Easy to combine experiments

Published D0 Result

based on $B_s
ightarrow D_s(\phi\pi)\mu X$ sample (Phys. Rev. Lett. 97 (2006) 021802)

One experiment sets same exclusion limit as all combined ones!

First double sided limit: 17 < Δm_s < 21 ps⁻¹ @ 90% CL Δm_s < 21 ps⁻¹ @ 95% CL

false probability at 17-21 ps $^{-1} \approx$ 5%

Updated D0 Result

include additionally $B_s \to D_s(K^*K)\mu X \& B_s \to D_s(\phi\pi)eX$

Amplitude consistent with 1 around Δm_s = 19 ps⁻¹

double sided 90% CL limit: 17 < Δm_s < 21 ps⁻¹ Δm_s > 15 ps⁻¹ @ 95% CL

false probability at 17-21 $m ps^{-1} pprox$ 8.0%

Amplitude Scans (CDF)

hadronic

semileptonic

 \mathcal{A} consistent with 1 for $\Delta m_s \sim$ 17.75 ps⁻¹ for both samples Hadronic sensitivity \geq 30 ps⁻¹ !

Combined Amplitude Scan (CDF)

 \mathcal{A} compatible with 1 for $\Delta m_s \sim$ 17.75 ps⁻¹!

 $\mathcal{A}/\sigma_{\mathcal{A}}(\Delta m_s = 17.75 \text{ ps}^{-1}) \sim 6.05$ What is the probability for background to fake such a signal?

Likelihood Scan (CDF)

Figure of merit: $\log(L) = \log[L(A = 1, \Delta m_s)/L(A = 0)]$

How often can random tags produce a LH minimum this deep? P-value: 8×10^{-8} ; we are in 5 σ land!

 $\Delta m_s = 17.77 \pm 0.10 (\text{stat.}) \pm 0.07 (\text{syst.}) \text{ ps}^{-1}$ Systematic dominated by uncertainties on ct scale consistent with indirect SM fits: $\Delta m_s = 18.3^{+6.5}_{-1.5} \text{ps}^{-1}$

$\left|V_{td} ight|/\left|V_{ts} ight|$ Measurement (CDF)

status autumn 06

status summer 05

Measurement no longer determined by experimental uncertainties

Summary

- Tevatron significantly improved understanding of B_s physics
- Precision measurements on $\Delta\Gamma_s$ $\Delta\Gamma_s = 0.12 \pm 0.08 \pm 0.03 \text{ ps}^{-1}$ (and first look at CP violating phase)
- First measurement of Δm_s : 17.77 ± 0.10(stat.) ± 0.07(syst.) ps⁻¹ Signal at 5 σ level & seen by both experiments!
- CDF & D0 keep on testing the Standard Model and constraining New Physics Models

Backup

CDF versus D0

CDF

- Two displaced Track Trigger (TTT)
- Particle ID (dE/dx & TOF)
- Silicon layer close to interaction strong in hadronic decays good kaon tagging

D0

- Excellent Muon coverage
- High forward acceptance

strong in semi-muonic decays

excellent muon tagging

Tevatron Performance

Collider Run II Integrated Luminosity

Delivered luminosity (2002 - now): 1.8 fb⁻¹, (on tape: 1.6 fb⁻¹) Used for following analysis: 1 fb⁻¹; (unless explicitly stated)

Short Reminder on CKM Physics

Our knowledge of flavor physics can be expressed in the CKM matrix

basis transformation between mass (strong) and flavor (weak) eigenstates

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

3 real parameters & one complex phase $\rightarrow CP$ violation $\lambda \approx 0.22$ Unitarity relation for b quarks: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Many constraints on CKM parameters come from B system

Transversity Base

- work in J/ψ rest frame
- K^+K^- plane defines x/y plane, K^+ defines positive y axis
- heta, ϕ polar and azimuthal angle of μ^+
- $\bullet \ \Psi$ helicity angle of ϕ

$\Delta\Gamma_s$: Angular Distributions

Neutral B Meson Mixing

Two-state mixing system

- "heavy" and "light" mass eigenstates
- $B \text{ and } \overline{B} \text{ weak eigenstates:}$ $|B_s^0\rangle = \frac{1}{\sqrt{2}}(|B_{s,H}\rangle + |B_{s,L}\rangle)$ $|\overline{B}_s^0\rangle = \frac{1}{\sqrt{2}}(|B_{s,H}\rangle - |B_{s,L}\rangle)$
- Solution in proper time

$$P(t)_{B_s^0 \to B_s^0} = \frac{1}{2\tau} e^{-t/\tau} (1 + \cos \Delta m_s t)$$
$$P(t)_{B_s^0 \to \overline{B}_s^0} = \frac{1}{2\tau} e^{-t/\tau} (1 - \cos \Delta m_s t)$$

• mixing frequency $\Delta m_s = m_H - m_L$

Mixing Results (D0)

Update of Δm_s Analysis (CDF)

- partial reconstructed golden modes (+ 3.200 B_s candidates)
- NN selection for additional hadronic modes (2.100 \rightarrow 3.600 B_s candidates & better S/N)
- improvement in tagging performance:
 - addition of opposite side kaon tagger
 - NN combination of opposite side taggers
 - combination of kinematical and PID variables for SST
- PID selection for semileptonic modes, $m(\ell D)$ included in fit

False probability went down from 0.5 \times 10⁻² to 8 \times 10⁻⁸ on the same data sample!

Spring '06 Result (CDF)

(Phys. Rev. Lett. 97, (2006) 062003)

 $\Delta m_s = 17.31^{+0.33}_{-0.18}(stat.) \pm 0.07(syst.) \mathrm{ps}^{-1}$

Proper Time Resolution

Same Side Tagger @ CDF (II)

Same Side Tagger @ CDF (III)

Systematic studies:

- Fragmentation
- Production mechanisms
- Particle ID resolution
- kaon/proton/pion rates
- B^{**} rates (for B^+ , B^0)
- Data/Monte Carlo agreement

max PID dilution D [%]

Very good data MC agreement for B^+ and B_d modes!

Status w/o Tevatron Run II Results

$\Delta m_s > 14.4 \ ps^{-1} \ 95\%$ CL

LEP + SLD + CDF Run I

 $A(\Delta m_s = 15 \, ps^{-1}) = 0.48 \pm 0.43$ Sensitivity: $18.2 \ ps$

Amplitude method: H-G. Moser, A. Roussaire, NIM A384, 491 (1997)

25

Systematic Uncertainties (CDF) (I)

Systematic uncertainties \sim 0.15-0.20 at high Δm_s

Analysis limited by statistics

Systematic Uncertainties (CDF) (II)

Source	Value (ps^{-1})
Silicon detector alignment	0.04
Track fit bias	0.05
Primary vertex bias	0.02
Hadronic k -factors	0.03
Amplitude scan systematic effects	< 0.01
Total	0.07

All relevant systematic uncertainties:

- related to *ct* scale
- common between hadronic and semileptonic samples

Amplitude Scan Notation

- Amplitude uncertainties from unbinned likelihood fit
- Yellow: 1.645σ around data points defines 95% CL region
- Δm values, where $\mathcal{A} + 1.645\sigma < 1$ are excluded at 95% CL
- Dashed line: 1.645σ as a function of Δm
- Sensitivity: Δm , where $1.645\sigma = 1$ first
- On average, we expect to observe mixing within sensitivity

Can we SEE the Asymmetrie?

CDF: Asymmetry modulo 17.77 ps^{-1} for hadronic modes

Unbinned LH fit, exploiting event-by-event σ_{ct} & D

D0: data points weighted by significance

Δm_s Measurement (CDF)

 Δm_s in [17.00, 17.91] ps⁻¹ @ 90% C.L. Δm_s in [16.94, 17.97] ps⁻¹ @ 95% C.L.

 $\Delta m_s = 17.77 \pm 0.10$ (stat.) ± 0.07 (syst.) ps⁻¹ Systematic dominated by uncertainties on ct scale consistent with indirect SM fits: $\Delta m_s = 18.3^{+6.5}_{-1.5}$ ps⁻¹

$\left|V_{td} ight|/\left|V_{ts} ight|$ Measurement (CDF)

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

Input	Value	Source
$\frac{m(B^0)}{m(B_s)}$	0.98390	CDF 2006
ξ	$1.21\substack{+0.047 \\ -0.035}$	Lattice 2005
Δm_d	0.507 ± 0.005	PDG 2006
Δm_s	$17.77 \pm +0.10 \pm +0.07$	this analysis

 $|V_{td}|/|V_{ts}| = 0.2061 \pm 0.0007 (\text{exp.})^{+0.0081}_{-0.0060} \text{(theo.)}$

Measurement no longer determined by experimental uncertainties.

Belle measurement $b \to d\gamma$: $|V_{td}|/|V_{ts}| = 0.199^{+0.026}_{-0.025}$ (exp.) $^{+0.018}_{-0.015}$ (theo.)