

B lifetimes, CP violation and rare decays at Tevatron

for the CDF and DØ Collaborations 16 Okt 2006, HQL06

- Introduction
- Tevatron Experiments
- Results
- **-** Summary

The Tevatron

- The Tevatron is a $p\bar{p}$ collider at $\sqrt{s} = 1.96$ TeV.
- Large cross section:

 $\sigma(p \overline{p} \rightarrow bX) \approx 100 \,\mu b$

¬ O(10⁵) larger than e⁺e⁻ at Υ(4S)/Z⁰

- ¬ Production of all kind of B hadrons e.g. B[±] , B⁰ , B_s, B_c, Λ_b, ...
- ¬ Total inelastic x-section is ~10³×σ(bb)
 → Messy environment with large combinatorics
 → need for highly selective trigger.

Tevatron experiments

- Both detectors:

- silicon microvertex detectors
- central tracking in solenoid
- EM and Had calorimeters
- muon system
- high rate trigger/DAQ system

¬ <u>DØ:</u>

- excellent muon ID and trigger at L1
- excellent tracking acceptance

¬ <u>CDF:</u>

- particle ID (ToF and dE/dx)
- displaced track trigger at L2
- excellent mass resolution

Outline

- Many interesting B Physics results has been produced and already published by CDF and DØ Collaborations
- Concentrate on selected latest results for:
 - B Lifetime measurements
 - CP violation measurements
 - Search for rare B decays
- B_s Lifetime Difference and Mixing
 (Tuesday, 17th of october : Stephanie Menzemer)
- Spectroscopy and decays of B hadrons (Thursday, 19th of october : Manfred Paulini)

B Lifetime measurements

Interests in B hadron lifetimes

- Test of non-spectator effects in decays of heavy hadrons which give rise to lifetime hierarchy:
 t(B⁺) ≥ t(B⁰) ≈ t(B_s⁰) > t(Λ_b) » t(B_c)
- Heavy Quark Expansion includes these effects (expansion in 1/m_b) and predicts lifetime ratios:
 - $t(B^+)/t(B^0) = 1.00 \pm 0.05$ x (f_B/200 MeV)²
 - $t(B_S^0)/t(B^0) = 1.00 \pm 0.01$
 - $t t(\Lambda_b)/t(B^0) \sim 0.9$
- The B⁺, B⁰ lifetimes are precisely measured at B-factories. Λ_b and B⁰_s ratios can be measured at Tevatron.

Λ_{b} Lifetime in Λ_{b} à J/ ψ Λ GUTENBERG

Λ_{b} Lifetime in Λ_{b} à J/ $\psi \Lambda$ (2) gutten per c

- The world average on t(Λ_b)/t(B^o) measurements used to show ~2σ lower value than the NLO prediction so far.
- DØ result consistent with prediction
- CDF result sits above the prediction!
- Need more experimental inputs to conclude the issue.

B_s Lifetime in B_s à $D_s \pi$, $3\pi^{GUTENBERG}$

- Fully reconstructed hadronic decays from displaced track trigger
- Trigger bias is removed by a Monte Carlo approach.
- Mass and decay length fitted simultaneously to extract lifetime.

360 pb-1

 $\tau(B_s^0) = 1.60 \pm 0.10 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \,\text{ps}$

B⁺/B⁰ Lifetime ratio

CP violation measurements

charge asymmetry in B decays

- Three possible contributions for CP violation
 - mixing, decay and interference

In case of mixing the flavour specific B Decays CP violation is given by charge asymmetry

$$A_{f} = \frac{N(B \to fX) - N(\overline{B} \to \overline{fX})}{N(B \to fX) + N(\overline{B} \to \overline{fX})} = \frac{\Delta\Gamma}{\Delta m} \tan\phi$$

 Describtion of oscillation by three physical quantities

• $|M_{12}|, |\Gamma_{12}|$: elements of complex mass matrix

• CP violating phase
$$\phi = \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right)$$

¬ Details for Δm_s and $\Delta \Gamma_s / \Gamma_s$ measurement → see talk of Stephanie Menzemer

14

$$- \text{ decay rate asymmetry in the hadronic mode B0→ K+π- from interference between decay and mixing
$$- B^{0}→h^{+}h^{-} \text{ like B factories, but unique large sample of B0s→h^{+}h^{-}
$$\frac{p}{B^{0}→\pi^{+}\pi^{-}+c.c.} (0.160 \pm 0.009) 1121 \pm 63 \\ B^{0}→K^{+}\pi^{-}+c.c. (0.186 \pm 0.009) 1307 \pm 64$$

$$B^{0}→K^{+}\pi^{-}+c.c. (0.186 \pm 0.009) 1307 \pm 64$$

$$A_{CP} = \frac{N(\overline{B}^{0}→K^{-}\pi^{+}) - N(B^{0}→K^{+}\pi^{-})}{N(\overline{B}^{0}→K^{-}\pi^{+}) + N(B^{0}→K^{+}\pi^{-})} = -0.086 \pm 0.023 (stat.) \pm 0.009 (syst.)$$$$$$

CDF is becoming a major player in the CPV game. The CDF results is the second world's best measurement.

 \neg In agreement with the current HFAG world average (calculated with the previous CDF result on 355 pb⁻¹).

Asymmetry in
$$B^0s \rightarrow K^+\pi^-$$
 gutenbergy

- Large SM expectation for this asymmetry $(A_{CP} \sim 0.37)$

$$A_{\mathsf{CP}} = \frac{N(\overline{B}_s^0 \to K^+ \pi^-) - N(B_s^0 \to K^- \pi^+)}{N(\overline{B}_s^0 \to K^+ \pi^-) + N(B_s^0 \to K^- \pi^+)} = 0.39 \pm 0.15 \ (stat.) \pm 0.08 \ (syst.)$$

¬ Compare rates and asymmetries of B⁰→K⁺ π ⁻ and B⁰_s→K⁻ π ⁺ unique to CDF – to probe NP with minimal assumption.

using HFAG the amplitude ratio can be calculated:

 $\frac{|A(\bar{B}_d \to \pi^+ K^-)|^2 - |A(\bar{B}_d \to \pi^- K^+)|^2}{|A(\bar{B}_s \to \pi^- K^+)|^2} = 0.84 \pm 0.42 \text{(stat.)} \pm 0.15 \text{(syst.)}$

- consistent with SM ([Lipkin, Phys. Lett. B621:126,.2005] ,[Gronau Rosner Phys.Rev. D71 (2005) 074019]) prediction of 1

 decay rate asymmetry in semileptonic modes from mixing only

 special interest for rate asymmetry for B_s mesons (not measured from B factories)

$$A_{SL}^{s} = \frac{N(\overline{B}_{s} \to I^{+}X) - N(B_{s} \to I^{-}X)}{N(\overline{B}_{s} \to I^{+}X) + N(B_{s} \to I^{-}X)} = \frac{\Delta\Gamma_{s}}{\Delta m_{s}} \tan\phi_{s}$$

¬ SM expectation:

$$\phi_{s} \approx 0.3^{\circ}$$

 $A_{SL}^{s} = (0.21 \pm 0.04) \times 10^{-4}$

- New physics could anhance the asymmetry:

 $A_{SL}^{s}(NP) \approx 0.5 \times 10^{-2}$

 all B mesons give contribution to dimuon charge asymmetry

$$A_{SL} = \frac{N(b\overline{b} \to \mu^+ \mu^+ X) - N(b\overline{b} \to \mu^- \mu^- X)}{N(b\overline{b} \to \mu^+ \mu^+ X) + N(b\overline{b} \to \mu^- \mu^- X)}$$

$$\mu \bullet \rho \bullet \mu$$

- \rightarrow clean channel
 - relatively few processes contribute to sam-sign samples
 - To first order no charge asymmetry in background processes
- →Need to take into account detector effects, polarity and sign of pseudorapidity

- Most precise measurement of A_{SL}
 - $A_{SL} = -0.0044 \pm 0.0040 \pm 0.0028$

- ¬ A_{SL} contains contribution from B_d and B_s → Use B factory results to extract A^s_{SL}
 - $A_{SL}^{s} = -0.0076 \pm 0.0102$ (dimuon)

Asymmetry in $B_s \dot{a} D_s \mu v$

 \neg decay rate asymmetry in the semileptonic mode $B_s {\rightarrow} D^{\text{-}}{}_s \mu^+$

calculate over total untagged
 rate asymmetry

$$A_{SL}^{untagged} = \frac{1}{2} A_{SL}^{s} = \frac{N(B_{s} \rightarrow D_{s}^{-}\mu^{+}) - N(\overline{B}_{s} \rightarrow D_{s}^{+}\mu^{-})}{N(B_{s} \rightarrow D_{s}^{-}\mu^{+}) + N(\overline{B}_{s} \rightarrow D_{s}^{+}\mu^{-})}$$

- first direct measurement

$$A_{SL}^s = 0.0245 \pm 0.0193 \pm 0.0035$$

¬ combination with dimuon
 measurement
 A^s_{s1}

$$A_{SL,c}^{s} = -0.0007 \pm 0.0090$$

Search for rare B decays

 \neg In the Standard Model, the FCNC decay of B $\grave{a}\,\mu^+\mu^-$ is heavily suppressed

SM prediction à $BR(B_s \rightarrow \mu^+\mu^-) = (3.5 \pm 0.9) \times 10^{-9}$ (Buchalla & Buras, Misiak & Urban)

- $B_d \dot{a} \mu \mu$ is further suppressed by CKM factor $(v_{td}/v_{ts})^2$
- SM prediction is below the sensitivity of current experiments (CDF+D0): SM à Expect to see 0 events at the Tevatron

Any signal at the Tevatron would indicate new physics!!

Search for rare decay $B_s \rightarrow \mu \mu^{\mu \nu \tau \epsilon}$

 CDF constructs a likelihood ratio using three discriminating variables

$$L_{R} = \frac{\prod_{i} P_{S}(x_{i})}{\prod_{i} P_{S}(x_{i}) + \prod_{i} P_{b}(x_{i})}$$

 $P_{s/b}$ is the probability for a given sig/bkg to have a value of x, where i runs over all variables.

- ¬ observe 1 B_s →µµ, expect 0.88 ± 0.30 (cc)
- ¬ observe 0 B_s →µµ, expect 0.39 ± 0.21 (cf)

- 300pb⁻¹: observe 4, expect 4.3 ± 1.2

- +400pb⁻¹(blind): expect 2.2 ± 0.7

(MeV/c

Events/5

• Evolution of limits (in 95%CL):

CDF B _s ->µµ	176 pb ⁻¹	7.5×10 ⁻⁷	Published	
DØ Β _s ->μμ	240 pb ⁻¹	5.1×10 ⁻⁷	Published	
DØ Β _s ->μμ	300 pb ⁻¹	4.0×10 ⁻⁷	Prelim.	
DØ Β _s ->μμ	700 pb ⁻¹	<2.3×10-7>	Prelim. Sensitivity	
CDF B _s ->µµ	364 pb ⁻¹	2.0×10 ⁻⁷	Published	
CDF B _s ->µµ	780 pb ⁻¹	1.0×10 ⁻⁷	Prelim.	
	90% CL			World's best rea
Babar B _d ->µµ	111 fb ⁻¹	8.3×10 ⁻⁸	Published	
CDF B _d ->µµ	364 pb ⁻¹	4.9×10 ⁻⁸	Published	
CDF B _d ->µµ	780 pb ⁻¹	3.0×10 ⁻⁸	Prelim.	
				World's best rea
16 Okt 2006		HQL06, Cano Ay		Wetter -

Conservative projection
 based on sensitivity of
 current analyses

 Ongoing efforts to significantly improve sensitivity of the analyses

Tevatron can push down
 to at least low 10⁻⁸ region

Summary

- \neg measured Λ_{b} , Bs and B+/B0 lifetimes with high precision
 - competitive or leading results

precise or first measurements of CP violation in the B sector with

- hadronic decays $B^0 \rightarrow K\pi$
- semileptonic decays bb $\rightarrow \mu\mu$ and $B_s \rightarrow D_s\mu\nu$

 \neg CDF and DØ already constrain new physics models, which contribute to the decay $B_s{\rightarrow}\mu\mu$

- No event seen in ~800pb⁻¹
- CDF and DØ will push sensitivity to 10⁻⁸ level

 CDF and DØ are complementory to the B factories and for some measurements the precision become more and more competitive

¬more results from Stephanie and Manfred

Backup

Feynman diagrams for rate asymmetry

CDF Optimisation for $B_s \rightarrow \mu \mu^{GUTENBERG}$

 CDF constructs a likelihood ratio using discriminating variables λ, Δα, Iso.

$$L_{R} = \frac{\prod_{i} P_{s}(\chi_{i})}{\prod_{i} P_{s}(\chi_{i}) + \prod_{i} P_{b}(\chi_{i})}$$

 $P_{s/b}$ is the probability for a given sig/bkg to have a value of *x*, where *i* runs over all variables.

Optimize on expected upper limit
L_R(optimized)>0.99

- Optimize cuts on three discriminating variables
 - Pointing angle
 - n 2D decay length significance
 - n Isolation
- n Random Grid Search
- n Maximize S/(1+sqrt(B))

16 Okt 2006

