Heavy Quark Expansion (HQE) Fits to Inclusive $B \rightarrow X_c Iv$ and $B \rightarrow X_s \gamma$ Moment Measurements

Oliver Buchmüller CERN

•" R_b and sin2 β tension"

• Extraction of HQE parameters (m_b , m_c , μ_{π}^2 , ...)

• *IV_{cb}I at ~2% ; IV_{ub}I at ~5% (inclusive)*

•A new world average for $BR(b \rightarrow s\gamma)$

The sides of the triangle

A measurement of a length of a triangle is as good as a measurement of an angle!

"R_b - sin2β tension"

ρ =0.163±0.028 η =0.344± 0.016

Potential disagreement between R_b and sin2β.

Yet, not significant but its interesting to see that the R_b constraint is comparable to the one from sin2 β

Semileptonic and Radiative B Decays

Why semileptonic decays?

|V_{ub}| and |V_{cb}| are crucial in testing CKM unitarity and SM mechanism for CP violation

Hadronic and leptonic currents factorise, theoretical uncertainties are under control giving access to $|V_{ub}|$ and $|V_{cb}|$

`radiative penguin'

- $b \rightarrow s, d$ transition is a Flavour Changing Neutral Current
 - forbidden in the standard model at tree-level
 - > exists only at loop level
- heavy particles dominate in the loop
 - in SM: sensitive to 'top' CKM parameters: V_{tb}V^{*}_{tq}

Both decays can be treated in the framework of Heavy Quark Effective Theory, relating parton level decay rate to meson decay rate with the help of Operator Product Expansions

The Heavy Quark Expansion (HQE)

·Short-distance physics encoded in coefficients of operator products (to some order in α_s). Calculable!

 \cdot Long-distance physics encoded in exp. values of products of quark operators (to some order in $1/m_b$). NOT calculable! Must be determined empirically.

$$\begin{split} \Gamma_{c\ell\nu} &= \frac{G_F^2 (p_b)}{192\pi^3} D^2 (1 + A_{ew}) A_{pert}(r, \mu) \times \\ & \left[z_0(r) \left(1 - \frac{\mu_s^2 - \mu_s^2 + \frac{\mu_b^3 + \mu_b^3}{m_b}}{2m_b^2} \right) \right. \\ -2(1-r)^4 \frac{\mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{m_b^2} + d(r) \frac{\rho_D^3}{m_b^3} + \mathcal{O}(1/m_b^4) \right]. \\ & r = m_b^2 m_b^2 \end{split}$$

 \Rightarrow Need to get access to the not predictable HQE parameters!

The Heavy Quark Expansion (HQE)

·Short-distance physics encoded in coefficients of operator products (to some order in α_s). Calculable!

 \Rightarrow Need to get access to the not predictable HQE parameters!

HQE Fit

⇒Extract the HQE parameter $m_b, m_c, \mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3$ and $IV_{cb}I$ as well as BR_{clv} from a simultaneous fit to all moment measurements (N+1*). Experimental and theoretical errors and their correlations are all accounted for in the fit.

* Only external input to the fit is: B lifetime τ_{B+B0} =1.585±0007 ps

Lepton Energy Moments

Oliver Buchmüller HQL 2006

Hadronic Mass Moments

B→ sy Spectra and Moments

Measure photon spectrum in b \rightarrow s γ decays:

Two main approaches:

- Inclusive:
 - identify photon
- Semi-Inclusive:
 - reconstruct many exclusive final states (up to 38!)

Difficult measurement: Overwhelming background from π^0 s for E_y < 1.8 GeV

Measurement of photon spectrum and its moments gives information about inner structure of B meson: • b quark mass(m_b) • Fermi momentum (μ_{π}^2)

Available moment measurements

Legend:		Hadron Moments		Lepton Moments		Photon Moments		
n = order of (central) moment of observable M _x , E ₁ and E_ I = min. lepton momentum g = min. photon energy	BaBar	n=1,2,3,4 l=0.9-1.6	Ν	n=0,1,2,3 l=0.6-1.5	Ν	n=1,2,3 g=1.9-2.3	Ŋ	
	Belle	n= 1,2 I=0.9-1.6	X	n=1,2 I=0.6-1.5	X	n=1,2 g=1.8		
	CLEO	n=2,4 l=1.0-1.5	Ø	n=1,2 I=0.6-1.5	X	n=1,2 g=2.0	Ø	
 ✓ published with covariance matrix and used in fit ☑ not used in fit as 	Delphi	n=2,4,6 I=0.0		n= 1,2,3 I=0.0				
	CDF	n=2,4 I=0.7						
covariance matrices not available	Total of 51 magauramental							

Total of 51 measurements!

Important to take correlations between moments with different min. lepton/photon energies into account

Inclusive IV_{cb}I - Fit to Moments

Inclusive IV_{cb}I

Result of fit to all moment measurements:

|V_{cb}| @ 2% m_b < 1% m_c @ 5%

 $\frac{\ln MS \text{ scheme:}}{\underline{m}_{b}(\underline{m}_{b})} = 4.20 \pm 0.04 \text{ GeV}$ $\overline{m}_{c}(\underline{m}_{c}) = 1.24 \pm 0.07 \text{ GeV}$ $\overline{m}_{c}(\mu)/\overline{m}_{b}(\mu) = 0.235 \pm 0.012$

courtesy of N.Uraltsev

Good agreement with other similar analyses: Bauer et al. hep-ph/0408002 DELPHI hep-ex/0510024

Oliver Buchmüller HQL 2006

m_b and m_c

 $m_c(m_c) = 1.22 \pm 0.02 \pm 0.04$ GeV (from 1S Fit

Oliver Buchmüller HQL 2006

Hoang & Manohar Phys.Lett.B633:526-532,2006)

Inclusive V_{cb}: Summary

>100 moment measurements and many HQE fit results ...

Fits in kinetic scheme

Based on hep-ph/0401063

BABAR Phys.Rev.Lett.93:011803,2004 Vcb = $41.7 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{\Gamma_{SL}}$ *

DELPHI Eur.Phys.J.C45:35-59,2006 Vcb = $41.9 \pm 0.6_{exp} \pm 0.6_{FIT} \pm 0.6_{\Gamma_{SL}}$ *

BELLE ICHEP06 (preliminary) Vcb = 41.9 \pm 0.7_{fit} \pm 0.5_{α s} \pm 0.6_{Γ SL}

 OB & HF
 Used by

 Phys.Rev.D73:073008,2006 HFAG

 Vcb = 42.0± 0.2_{exp} ± 0.4_{HQE} ± 0.6_{ΓSL}

Fits in 1S scheme

Based on hep-ph/0408002

Bauer et al. Phys.Rev.D70:094017,2004 Vcb = $41.7 \pm 0.6_{fit} \pm 0.1_{\tau}$ *

BELLE ICHEP06 (preliminary) Vcb = $41.5 \pm 0.5_{fit} \pm 0.2_{\tau}$

* Scaled to the same lifetime τ_B =1.585± 0.007 ps All Vcb numbers x10⁻³

Very good consistency V_{cb} @ <2% established

Inclusive V_{cb}: Summary

>100 moment measurements and many HQE fit results ...

Fits in kinetic scheme

Based on hep-ph/0401063

BABAR Phys.Rev.Lett.93:011803,2004 Vcb = $41.7 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{\Gamma_{SL}}$ *

DELPHI Eur.Phys.J.C45:35-59,2006 Vcb = $41.9 \pm 0.6_{exp} \pm 0.6_{FIT} \pm 0.6_{\Gamma_{SL}}$ *

BELLE ICHEP06 (preliminary) Vcb = 41.9 \pm 0.7_{fit} \pm 0.5_{α s} \pm 0.6_{Γ SL}

 OB & HF
 Used by

 Phys.Rev.D73:073008,2006 HFAG

 Vcb = 42.0 ± 0.2_{exp} ± 0.4_{HQE} ± 0.6_{ΓSL}

Fits in 1S scheme

Based on hep-ph/0408002

Bauer et al. Phys.Rev.D70:094017,2004 Vcb = $41.7 \pm 0.6_{fit} \pm 0.1_{\tau}$ *

BELLE ICHEP06 (preliminary) Vcb = $41.5 \pm 0.5_{fit} \pm 0.2_{\tau}$

 * Scaled to the same lifetime $\tau_{\rm B}{=}1.585{\pm}~0.007~\text{ps}$ All Vcb numbers x10^3

IV_{ub}I Summary and UT Constraints from Sides and Tree Processes

b → s γ Branching Fraction

- Partial branching fractions are measured above different photon energies
- Need to be extrapolated to $E_{\gamma} > 1.6 \text{ GeV}$ to compare with theory
- Extrapolation factors based on HQE fit to clv and bsg moments

Mode	Reported \mathcal{B}	E_{\min}	\mathcal{B} at E_{\min}
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	_
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351\pm32\pm29$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$
BABAR Inc.[7]	_	1.9	$367\pm29\pm34\pm29$

New World Average from HFAG:

BR(B→X_sγ) = (3.55 ± 0.24 ± 0.10 ± 0.03) 10⁻⁴

7% uncertainty

Photon energy spectrum constraint with m_b^2 and μ_{π}^2 from the global HQE fit

SM prediction:

 $3.57 \pm 0.3 \times 10^{-4}$ Buras et al. (hep-ph/0203135) $3.44 \pm 0.4 \times 10^{-4}$ Neubert (hep-ph/0408179) $3.61 \pm 0.42 \times 10^{-4}$ Hurth et al. (hep-ph/0312260)

b → s γ Branching Fraction

- Partial branching fractions are measured above different photon energies
- Need to be extrapolated to $E_{\gamma} > 1.6 \text{ GeV}$ to compare with theory
- Extrapolation factors based on HQE fit to clv and bsg moments

Mode	Reported \mathcal{B}	E_{\min}	\mathcal{B} at E_{\min}
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	_
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351\pm32\pm29$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$
BABAR Inc.[7]	_	1.9	$367\pm29\pm34\pm29$

New World Average from HFAG:

BR(B→ $X_{s\gamma}$) = (3.55 ± 0.24 ± 0.10 ± 0.03) 10⁻⁴

7% uncertainty

Extrapolation Factors for BF

SM prediction:

 $3.57 \pm 0.3 \times 10^{-4}$ Buras et al. (hep-ph/0203135) $3.44 \pm 0.4 \times 10^{-4}$ Neubert (hep-ph/0408179) $3.61 \pm 0.42 \times 10^{-4}$ Hurth et al. (hep-ph/0312260)

Conclusions

Extracting fundamental QCD parameter (m_b , m_c , μ_{π}^2 , ...) from HQE fits to semileptonic and radiative B Decays has become an established procedure providing important input for many measurements.

- Consistency between experimental results
- Good agreement of results from semileptonic and radiative B decays
- Precision determination of SM parameters:
 - IV_{cb} at <2% level established</p>
 - $|V_{ub}|$ at ~7% probing consistency with sin(2 β) and hence SM
 - m_b (<1%) and m_c (5%)
- Radiative B decays
 - BR($B \rightarrow X_s \gamma$) @ 7% important constraint on many NP models

"R_b - sin2β tension"

Sin2β: Recent improvements

 $\sin(2\beta) \equiv \sin(2\phi_1)$ PRELIMINARY BaBar $0.71 \pm 0.03 \pm 0.02$ hep-ex/0607107 Belle $0.64 \pm 0.03 \pm 0.02$ hep-ex/0608039 $0.84 + 0.82 \pm 0.16$ ALEPH PLB 492, 259-274 (2000) 3.20 +1.80 ± 0.50 OPAL EPJ C5, 379-388 (1998) 0.79 +0.41 CDF PRD 61, 072005 (2000) Average 0.68 ± 0.03 HFAG -2 -1 0 1 2 з

2006

2004: $sin2\beta = 0.726 \pm 0.037$ 2006: $sin2\beta = 0.675 \pm 0.026$

V_{ub}^{inc}: Recent improvements

V_{ub}: exclusive vs. inclusive

HQE Fit from BABAR

BABAR Fit Results

Oliver Buchmüller HQL 2006

NEW Belle Result (ICHEP06)

Kinetic Scheme |V_{cb}| and HQ parameters

http://belle.kek.jp/belle/talks/ICHEP2006/Urquijo.pdf

NEW Belle Result (ICHEP06)

Kinetic Scheme |V_{cb}| and HQ parameters

Lepton moments in hep-ex/0610012 - hadron moments soon to come

NEW Belle Result (ICHEP06)

Pioneering Work

Multi parameter fits to moments but sensitivity was limited ...