The Discovery Potential of rare K and B decays

Andreas Weiler
TU Munich

Indirect measurements

Lessons from the past: rare low energy processes like ΔM_{K} (charm), $\mathrm{B}_{\mathrm{d}}-\mathrm{B}_{\mathrm{d}}$ osc. and EWPT (top), can tell us a lot about heavy particles '9x LEP prior to their discovery

Present
'99-now Belle/Babar
SM works remarkably well, surprisingly also in the least understood sector: the flavor sector

Future

In order to test NP indirectly we need observables,
preferably with small SM contribution.

Flavour in the SM

Yukawas are responsible for flavour transitions

$$
\mathscr{L}_{\text {Yukawa }}=\bar{Q}_{L} Y_{D} D_{R} H+\bar{Q}_{L} Y_{U} U_{R}(H)_{c}
$$

$$
Y_{D}=\left(m_{d}, m_{s}, m_{b}\right) / v
$$

$$
Y_{U}=V_{\mathrm{CKM}}^{\dagger}\left(m_{u}, m_{c}, m_{t}\right) / v
$$

$m_{t} \gg m_{i}$ and $V_{C K M}$ has a hierarchical structure
There are no FCNCs on tree level.

Flavour change is small
 $$
Y_{D}=\left(m_{d}, m_{s}, m_{b}\right) / v
$$
 $$
Y_{U}=V_{\mathrm{CKM}}^{\dagger}\left(m_{u}, m_{c}, m_{t}\right) / v
$$

$$
Y_{U} \approx\left(\begin{array}{lll}
10^{-5} & -0.002 & 0.007+0.004 i \\
10^{-6} & 0.007 & -0.04+0.0008 i \\
10^{-8}+10^{-7} i & 0.0003 & 0.96
\end{array}\right.
$$

)

We have no idea why Y_{u} and Y_{D} are the way they are.
Generally, NP models are struggling since we have no theory of flavour.
We want NP to show up at around a TeV (Higgs stabilization). K-K mixing e.g. shows no generic flavour violation up to $10^{3} \mathrm{TeV}$.

Flavour precision tests

General structure of a decay rate

Energy scale

$\Gamma=($ non-pert. QCD $) \times$ QCD RG $\times\left(V_{\text {ckm }}\right.$ SM short dist. +NP$)$

theoretical uncertainty

Three strategies for precision tests:
I) hadronic uncertainties cancel in asymmetries $A_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{s} \rightarrow \psi \phi\right)$ partial cancelation: $\operatorname{Br}\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right) / \Delta M_{q}$
2) hadronic matrix element from Experiment ($K \rightarrow \pi \bar{\nu} \nu$)
3) inclusive, non-perturbative $\sim\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}\right)^{2}\left(B \rightarrow X_{s} \gamma\right)$

FCNCs in the SM

interesting Flavour channels

$$
\begin{array}{cl}
\mathrm{s} \rightarrow \mathrm{~d} \sim \lambda^{5} & \Delta \mathrm{M}_{\mathrm{K}}, \epsilon_{\mathrm{K}}, \epsilon^{\prime} / \epsilon, K_{L} \rightarrow \pi^{0} \bar{l} l, K \rightarrow \pi \bar{\nu} \nu \\
\mathrm{~b} \rightarrow \mathrm{~d} \sim \lambda^{3} \quad \Delta \mathrm{M}_{\mathrm{d}}, B_{d} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{d} \gamma \\
\mathrm{~b} \rightarrow \mathrm{~s} \sim \lambda^{2} \quad & \Delta \mathrm{M}_{\mathrm{s}}, B_{s} \rightarrow \mu^{+} \mu_{,}^{-} B \rightarrow X_{s} l^{+} l^{-} \\
B \rightarrow X_{s} \gamma A_{F B}\left(B \rightarrow X_{s} l^{+} l^{-}\right) \\
B \rightarrow K^{*} \gamma
\end{array}
$$

theoretical error
increasing SM contribution

$$
<15 \%<10 \%<5 \%
$$

FCNCs in the SM

interesting Flavour channels

$$
\begin{array}{cl}
\mathrm{s} \rightarrow \mathrm{~d} \sim \lambda^{5} & \Delta \mathrm{M}_{\mathrm{k}}, \epsilon_{\mathrm{k}}, \epsilon^{\prime} / \epsilon, K_{L} \rightarrow \pi^{0} \bar{l} l, K \rightarrow \pi \bar{\nu} \nu \\
\mathrm{~b} \rightarrow \mathrm{~d} \sim \lambda^{3} \quad \Delta \mathrm{M}_{\mathrm{d}}, B_{d} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{d} \gamma \\
\mathrm{~b} \rightarrow \mathrm{~s} \sim \lambda^{2} \quad & \Delta \mathrm{M}_{\mathrm{s}}, B_{s} \rightarrow \mu^{+} \mu_{,}^{-} B \rightarrow X_{s} l^{+} l^{-} \\
& B \rightarrow X_{s} \gamma A_{F B}\left(B \rightarrow X_{s} l^{+} l^{-}\right) \\
B \rightarrow K^{*} \gamma
\end{array}
$$

theoretical error
increasing SM contribution

$$
<15 \%<10 \%<5 \%
$$

FCNCs in the SM

interesting Flavour channels

$$
\mathrm{s} \rightarrow \mathrm{~d} \sim \lambda^{5} \quad \Delta \mathrm{M}_{\mathrm{K}}, \epsilon_{\mathrm{K}}, \epsilon^{\prime} / \epsilon, K_{L} \rightarrow \pi^{0} \bar{l} \bar{l}, K \rightarrow \pi \bar{\nu} \nu
$$

$$
\mathrm{b} \rightarrow \mathrm{~d} \sim \lambda^{3} \quad \Delta \mathrm{M}_{\mathrm{d}}, B_{d} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{d \gamma} \gamma
$$

$$
\begin{aligned}
\mathrm{b} \rightarrow \mathrm{~s} \sim \lambda^{2} & \Delta \mathrm{M}_{\mathrm{s},} B_{s} \rightarrow \mu^{+} \mu_{,}^{-} B \rightarrow X_{s} l^{+} l_{-}^{-} \\
& B \rightarrow X_{s} \gamma A_{F B}\left(B \rightarrow X_{s} l^{+} l^{-}\right) \\
& B \rightarrow K^{*} \gamma
\end{aligned}
$$

increasing
theoretical error

$$
<15 \%<10 \%<5 \%
$$

FCNCs in the SM

interesting Flavour channels

$$
\begin{gathered}
\mathrm{s} \rightarrow \mathrm{~d} \sim \lambda^{5} \quad \Delta \mathrm{M}_{\mathrm{K}}, \epsilon_{\mathrm{k}}, \epsilon^{\prime} / \epsilon, K_{L} \rightarrow \pi^{0} \overline{l l}, K \rightarrow \pi \bar{\nu} \nu \\
\mathrm{~b} \rightarrow \mathrm{~d} \sim \lambda^{3} \quad \Delta \mathrm{M}_{\mathrm{d}}, B_{d} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{d} \gamma \\
\mathrm{~b} \rightarrow \mathrm{~s} \sim \lambda^{2} \quad \begin{array}{l}
\Delta \mathrm{s}, B_{s} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{s} l^{+} l_{,}^{-} \\
B \rightarrow X_{s} \gamma A_{F B}\left(B \rightarrow X_{s} l^{+} l^{-}\right) \\
B \rightarrow K^{*} \gamma
\end{array}
\end{gathered}
$$

increasing
theoretical error SM contribution

$$
<15 \% \ll 10 \% \ll 5 \%
$$

Comparison of sensitivities
 D'Ambrosio, Giudice, Isidori, Strumia '02; Buras,Bryman, Isidori, Littenberg '05

plan of the talk

- Interesting NP flavour observables of the future
- rare Kaon decays: the four golden modes, status of the SM calculation, NP searches
- $B \rightarrow X_{s} \gamma$ (new result)
- rare B decays and large $\tan \beta$
- Conclusions

4 golden modes

$$
\begin{aligned}
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) \\
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} e^{+} e^{-}\right) \\
& \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)
\end{aligned}
$$

24 carat $\quad \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$

4 golden modes

$$
\begin{aligned}
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) \\
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} e^{+} e^{-}\right)
\end{aligned}
$$

$$
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)
$$

24 carat $\quad \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$

Potential of $K \rightarrow \pi \nu \bar{\nu}$

+ box

Dominated by short distance contributions
o sigma $\left(K^{+}\right)_{\text {theory }} \sim 4 \%$
o sigma($\left.K_{L}\right)_{\text {theory }} \sim 2 \%$

Potential of $K \rightarrow \pi \nu \bar{\nu}$

+ box

$$
\begin{aligned}
& A\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=B_{+}\left(\lambda_{c} \tilde{P}_{c}+\lambda_{t} X(v)\right) \\
& A\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=B_{L} \operatorname{Im}\left[\lambda_{t} X(v)\right]
\end{aligned}
$$

$$
\lambda_{t}=V_{\mathrm{ts}}^{*} V_{\mathrm{td}} \quad \lambda_{c}=V_{\mathrm{cs}}^{*} V_{\mathrm{cd}}
$$

B_{+}and B_{L} from $K^{+} \rightarrow \pi^{0} e^{+} \nu$

Dominated by short distance contributions
o sigma $\left(K^{+}\right)_{\text {theory }} \sim 4 \%$
o sigma(K_{L} theory $^{\sim}$ ~ 2%

Potential of $K \rightarrow \pi \nu \bar{\nu}$

+ box

$$
\begin{aligned}
& A\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=B_{+}\left(\lambda_{c} \tilde{P}_{c}+\lambda_{t} X(v)\right) \\
& A\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=B_{L} \operatorname{Im}\left[\lambda_{t} X(v)\right]
\end{aligned}
$$

$$
\lambda_{t}=V_{\mathrm{ts}}^{*} V_{\mathrm{td}} \quad \lambda_{c}=V_{\mathrm{cs}}^{*} V_{\mathrm{cd}}
$$

$$
\mathrm{B}_{+} \text {and } \mathrm{B}_{\mathrm{L}} \text { from } K^{+} \rightarrow \pi^{0} e^{+} \nu
$$

pure short-distance

Dominated by short distance contributions
o sigma $\left(K^{+}\right)_{\text {theory }} \sim 4 \%$
o sigma($\left.\mathrm{K}_{\mathrm{L}}\right)_{\text {theory }}$ ~ 2%

SM Calculation

General properties

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}^{(6)}=\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{2 \pi s_{W}^{2}} \sum_{i=u, c, t} C^{i}(\mu) Q_{\nu}^{(6)} \\
& Q_{\nu}^{(6)}=\sum_{l=e, \mu, \tau}\left(\bar{s}_{L} \gamma_{\mu} d_{L}\right)\left(\bar{\nu}_{l} \gamma^{\mu} \nu_{l L}\right)
\end{aligned}
$$

$$
C^{i}\left(M_{W}\right) \propto m_{i}^{2} V_{i s}^{*} V_{i d} \propto \begin{cases}\Lambda_{\mathrm{QCD}}^{2} \lambda & \mathrm{u} \\ m_{c}^{2}\left(\lambda+i \lambda^{5}\right) & \mathrm{c} \\ m_{t}^{2}\left(\lambda^{5}+i \lambda^{5}\right) \mathrm{t}\end{cases}
$$

* Z penguin is SU(2)L breaking: powerlike GIM * large CPV phase in dominant top contribution
* charm effects:
I) negligible in $K_{L}: O\left(m_{c}{ }^{2} / m_{t}{ }^{2}\right) \ll 1$ for dominant direct CPV-Amplitude

2) small in $K^{+} \sim 30 \%$ (\rightarrow next to next slide)

SM prediction of $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$

$$
\begin{aligned}
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2} \\
& \kappa_{L}=r_{K_{L}} \frac{3 \alpha^{2} \mathcal{B}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right)}{2 \pi^{2} s_{W}^{4}} \frac{\tau\left(K_{L}\right)}{\tau\left(K^{+}\right)}
\end{aligned}
$$

* short distance dominated (>99\%)
* very small theoretical error ~ 2\% * 85\% of total error CKM input * precise and direct measurement of amount of CPV in SM

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(2.93 \pm 0.44) \times 10^{-11}
$$

$\mathrm{Br}_{\text {exp }} / \mathrm{Brsm}_{\mathrm{sm}}<2.8610^{4}$ (90\% C.L.) E39I

KTEV, E39la (soon to be improved!)

SM prediction of $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$

$$
\begin{aligned}
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2} \\
& \kappa_{L}=r_{K_{L}} \frac{3 \alpha^{2} \mathcal{B}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right)}{2 \pi^{2} s_{W}^{4}} \frac{\tau\left(K_{L}\right)}{\tau\left(K^{+}\right)}
\end{aligned}
$$

$$
\begin{equation*}
X=1.46 \pm 0.04 \quad(\mathrm{NLO}) \tag{t}
\end{equation*}
$$

Buchalla \& Buras '93, '99; Misiak \& Urban '99

* short distance dominated (>99\%)
* very small theoretical error ~ 2\% * 85\% of total error CKM input * precise and direct measurement of amount of CPV in SM

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(2.93 \pm 0.44) \times 10^{-11}
$$

$\mathrm{Br}_{\text {exp }} / \mathrm{Brsm}_{\mathrm{sm}}<2.8610^{4}$ (90\% C.L.) E39I

Buras, Gorbahn, Haisch, Nierste '06

SM prediction of $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$

$$
\begin{aligned}
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2} \\
& \kappa_{L}=r_{K_{L}} \frac{3 \alpha^{2} \mathcal{B}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right)}{2 \pi^{2} s_{W}^{4}} \frac{\tau\left(K_{L}\right)}{\tau\left(K^{+}\right)}
\end{aligned}
$$

* short distance dominated (>99\%)

$$
X=1.46 \pm 0.04 \quad(\mathrm{NLO})
$$

Buchalla \& Buras '93, '99; Misiak \& Urban '99

$$
r_{K_{L}}=0.944 \pm 0.028 \text { isospाn }
$$

* very small theoretical error ~ 2\% * 85\% of total error CKM input * precise and direct measurement of amount of CPV in SM

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(2.93 \pm 0.44) \times 10^{-11}
$$

$$
\begin{aligned}
& \text { SM prediction for } \boldsymbol{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\nu} \bar{\nu} \\
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { SM prediction for } \boldsymbol{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \nu \bar{\nu} \\
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{d d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]
\end{aligned}
$$

SM prediction for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]$

* theoretical error of QCD
corrections to the charm contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation * P_{c} error now dominated by Δm_{c}

Buras, Gorbahn, Haisch, Nierste '05

SM prediction for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]$

* theoretical error of QCD
corrections to the charm contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation * P_{c} error now dominated by Δm_{c}

Buras, Gorbahn, Haisch, Nierste '05

$$
\begin{aligned}
& \Delta m_{c} \quad \text { theory } \quad \alpha_{s} \\
& P_{\mathrm{c}} \mathrm{NLO}=0.369 \pm 0.033 \pm 0.037 \pm 0.009 \approx 0.37 \pm 0.07 \\
& \text { Buchalla, Buras '94 } \\
& P_{c}{ }^{\text {NNLO }}=0.375 \pm 0.03 \mid \pm 0.009 \pm 0.009 \approx 0.38 \pm 0.04 \\
& \text { Buras, Gorbahn, Haisch, Nierste '05 }
\end{aligned}
$$

SM prediction for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]
$$

* theoretical error of QCD
corrections to the charm contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation
* P_{c} error now dominated by $\Delta \mathrm{m}_{\mathrm{c}}$

Buras, Gorbahn, Haisch, Nierste '05

SM prediction for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\kappa_{+}\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Re}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)\right)^{2}\right]
$$

* theoretical error of QCD
corrections to the charm contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation
* P_{c} error now dominated by $\Delta \mathrm{m}_{\mathrm{c}}$

Buras, Gorbahn, Haisch, Nierste '05

$$
\begin{aligned}
& \text { SM prediction for } K^{+} \rightarrow \pi^{+} \nu \bar{\nu} \\
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=K_{+}+\left[\left(\frac{\operatorname{Im}\left(V_{S}^{*} V_{t, t}\right)}{\lambda^{5}} X\right)^{2}+\left(\frac{\operatorname{Rec}\left(V_{t}^{*} V_{t b}\right)}{\lambda^{5}} X+\frac{\operatorname{Re}\left(V_{s}^{*}, V_{c l}\right)}{\lambda}\left(P_{c}+\delta P_{c}\right)^{2}\right]\right.
\end{aligned}
$$

* theoretical error of QCD
corrections to the charm
contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation
* P_{c} error now dominated by Δm_{c}

Buras, Gorbahn, Haisch, Nierste '05

* LD and dim8 effects in δP_{c} are
$\sim \pi^{2} \mathrm{~F}_{\pi}{ }^{2} / \mathrm{m}^{2}{ }^{2} \sim 10 \%$ of charm contribution,
6% enhancement of Brk^{+}Isidori, Mescia \& Smith ' 05

* LQCD could improve accuracy to I-2\% Isidori, Martinelli \& Turchetti '05
$\delta P_{c}=0.04 \pm 0.02$

SM prediction for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\left(8.0 \pm \underset{\text { Buras. Gorbahn. Haisch }}{1.1) \times 10^{11}}\right.
$$

Buras, Gorbahn, Haisch, Nierste '05

* theoretical error of QCD

$$
\mathcal{B}_{\exp }^{+}=\left(14.7_{-8.9}^{+13.0}\right) \times 10^{11}
$$ corrections to the charm

contribution P_{c} factor ~ 4 smaller thanks to NNLO calculation

* P_{c} error now dominated by $\Delta \mathrm{m}_{\mathrm{c}}$

Buras, Gorbahn, Haisch, Nierste '05

* LD and dim8 effects in δP_{c} are
$O\left(\pi^{2} \mathrm{~F}_{\pi}^{2} / \mathrm{m}_{\mathrm{c}}{ }^{2}\right) \sim 10 \%$ of charm contribution, 6% enhancement of Br^{+}
* LQCD could improve accuracy to I-2\%

Isidori, Martinelli \& Turchetti '05

MFV

SM Yukawa couplings are the only source of flavour violation.
All flavour violation is proportional to $\mathrm{V}_{\mathrm{CKM}}$.
Strong correlations between K and B physics.

K^{+}and K_{L} in specific MFV models

- Littlest Higgs: slight suppression

Buras, Uhlig, Poschenrieder '05

- Universal ED: <9-I0\% enhancement
- CMFV MSSM: 0...40\% suppression

Buras, Gambino, Gorbahn, Jäger, Silvestrini '00
General pattern:
Buras, Blanke '06
NP contribution to ΔM_{d} interferes constructively with $S M$
$\Delta F=2$ Amplitude S in the above models and

$$
\left(\frac{V_{\mathrm{td}}^{\mathrm{NP}}}{V_{\mathrm{td}}^{\mathrm{SM}}}\right)^{2}=\frac{S^{\mathrm{SM}}}{S^{\mathrm{SM}}+\left|\Delta S^{\mathrm{NPP}}\right|}<1
$$

$\operatorname{Br}(\mathrm{K})_{\text {exp }}>\operatorname{Br}(\mathrm{K})$ sm immediately falsifies most MFV models!

MFV upper bound

model independent 95\%C.L. upper bound

Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW '05

Universal CKM fit from UT Bona et. al '05
using universal UTfit + $B \rightarrow X_{s} \gamma+B \rightarrow X_{s} I^{+} I^{-}$

MFV upper bounds
 Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW (05)

Branching Ratios	$\left(\begin{array}{c}\text { MFV } \\ (95 \%)\end{array}\right.$	SM (95%)	SM (68%)	Exp
$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \cdot 10^{11}$	<11.9	<10.9	8.3 ± 1.2	$14.7^{+13.0}$ -8.9
$\operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right) \cdot 10^{11}$	<4.6	<4.2	3.1 ± 0.6	<2.86 104 (90\% C.L.) E39।
$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} v \bar{v}\right) \cdot 10^{5}$	<5.2	<4.1	3.7 ± 0.2	<64
$\operatorname{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \cdot 10^{9}$	<7.4	<5.9	3.7 ± 1.0	$<80 \quad$ (90\% C.L.) CDF AGS E787, E949
$\operatorname{Br}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right) \cdot 10^{10}$	<2.2	<1.8	1.1 ± 0.4	$<1.6 \cdot 10^{3}$

Beyond MFV

rare K decays are a very sensitive probe for non-MFV flavour violation since

$$
(s \rightarrow d) \sim \lambda^{5}
$$

suppression is not built in the model anymore.

Generic MSSM

- Flavor structure probes Susy breaking mechanism
- Room for sizable deviations even if $\Delta \mathrm{F}=2$ sector agrees well with SM
- very sensitive to new sources of flavor symmetry breaking due to λ^{5} suppression of SM amplitude

$$
\begin{aligned}
& \text { Amplitude SU(2) }\left\llcorner\propto \frac{1}{M_{Z}^{2}} V_{Z \bar{s} d}\right. \\
& \tilde{X}_{\text {SUSY }}^{\text {(peng) }} \propto \frac{\left(M_{L R}^{2}\right)_{d^{\prime} t}\left(M_{L R}^{2}\right)_{s^{\prime} t}^{*}}{M_{\text {SUSY }}^{4}}
\end{aligned}
$$

Generic MSSM

Buras, Ewerth, Jäger, Rosiek '04

> includes all present constraints
> $\Delta M_{K}, \epsilon_{K}, b \rightarrow s \gamma, \ldots$
saturation of
Grossman-Nir bound

KL could be 20-30x enhanced
in reach of E39la

Generic MSSM II

Isidori, Mescia, Paradisi, Smith , Trine '06

K^{+}best probe of up-type trilinear soft Susy breaking terms

$$
\mathcal{L}_{\text {soft }} \subset\left(A^{U} Y^{U}\right)_{i j} Q_{L}^{i} U_{R}^{j} \phi
$$

CKM and rare K decays

$$
(\sin 2 \beta)_{\psi K_{S}}=(\sin 2 \beta)_{\pi \nu \bar{\nu}}
$$

test of the 'golden relation'

Could help improve the knowledge of CKM parameters
However, more interesting is the $201 \times$ scenario:

* CKM known to great precision independent of NP from Belle, BaBar, LHCb, SuperB, ...
* SM prediction for $\mathrm{K}^{+}, \mathrm{K}_{\mathrm{L}}$ together with a 10% measurement allows precision test of the flavor structure of NP

Status of $K_{L} \rightarrow \Pi^{0}{ }^{+}{ }^{-}$

Buchalla, D’Ambrosio, Isidori; Isidori, Smith, Unterdorfer ’04, Smith, Mescia, Trine '06
$\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} l^{+} l^{-}\right)=\left[C_{\text {mix }}^{l}+C_{\mathrm{int}}^{l}\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)+C_{\mathrm{dir}}^{l}\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)^{2}+C_{\mathrm{CPC}}^{l}\right] \cdot 10^{-12}$

indirect	interference of CPV	direct direct and indirect	CP CPV

substantial progress in theory precision associated with light quark loops
experimental input from NA48

$$
\begin{array}{ll}
C_{\mathrm{dir}}^{e}=(4.62 \pm 0.24)\left(\omega_{7 V}^{2}+\omega_{7 A}^{2}\right) & C_{\mathrm{dir}}^{\mu}=(1.09 \pm 0.05)\left(\omega_{7 V}^{2}+2.32 \omega_{7 A}^{2}\right) \\
C_{\mathrm{int}}^{e}=(11.3 \pm 0.3) \omega_{7 V}, & C_{\mathrm{int}}^{\mu}=(2.63 \pm 0.06) \omega_{7 V}, \\
C_{\mathrm{mix}}^{e}=14.5 \pm 0.05, & C_{\mathrm{mix}}^{\mu}=3.36 \pm 0.20, \\
C_{\mathrm{CPC}}^{e} \simeq 0, & C_{\mathrm{CPC}}^{\mu}=5.2 \pm 1.6,
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right)=(1.5 \pm 0.3) \cdot 10^{-11} \\
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} e^{+} e^{-}\right)=\left(3.7_{-0.9}^{+1.1}\right) \cdot 10^{-11}
\end{aligned}
$$

$$
\text { Exp: }<2.8 \cdot 10^{-10}
$$

KTEV '00

$$
@ 90 \% \text { C.L. } \quad<3.8 \cdot 10^{-10}
$$

Status of $K_{L} \rightarrow \Pi^{0}{ }^{+}{ }^{-}$

indirect	interference of CPV	direct direct and indirect	CP CPV

Direct CPV amplitude:

* clean probe of independent

NP structures and CPV beyond
SM

* important if beyond-MFV NP is found

Status of $K_{L} \rightarrow \Pi^{0}{ }^{+}{ }^{-}$

Buchalla, D’Ambrosio, Isidori; Isidori, Smith, Unterdorfer ’04, Smith, Mescia, Trine '06
$\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} l^{+} l^{-}\right)=\left[C_{\text {mix }}^{l}+C_{\mathrm{int}}^{l}\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)+C_{\mathrm{dir}}^{l}\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)^{2}+C_{\mathrm{CPC}}^{l}\right] \cdot 10^{-12}$

indirect	interference of CPV	direct direct and indirect	CPV conserving

Direct CPV amplitude:

* clean probe of independent

NP structures and CPV beyond SM

* important if beyond-MFV NP is found

$B \rightarrow X_{s} \gamma$ new NNLO results

$$
B \rightarrow X_{s} \gamma
$$

Charm mass dependence enters first at NLO: Strong scheme ambiguity in $\mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{b}}$ only be resolved at NNLO

very involved calculation

M. Misiak,,${ }^{1,2}$ H. M. Asatrian, ${ }^{3}$ K. Bieri, ${ }^{4}$ M. Czakon, ${ }^{5}$ A. Czarnecki, ${ }^{6}$ T. Ewerth, ${ }^{4}$ A. Ferroglia, ${ }^{7}$ P. Gambino, ${ }^{8}$ M. Gorbahn, ${ }^{9}$ C. Greub, ${ }^{4}$ U. Haisch, ${ }^{10}$ A. Hovhannisyan, ${ }^{3}$ T. Hurth, ${ }^{2,11}$ A. Mitov, ${ }^{12}$ V. Poghosyan, ${ }^{3}$ M. Ślusarczyk, ${ }^{6}$ and M. Steinhauser ${ }^{9}$

I) 3-loop matching (complete)
2) 3 and 4-loop mixing (almost)
3) most difficult: 3-loop matrix element (interpolation between $m_{d} / m_{b} \gg \mid$ and $\alpha_{s}{ }^{2} n_{F}$ approximation)

Cut in photon energy

BaBar $\mathrm{E}_{\boldsymbol{\gamma}}>1.9 \mathrm{GeV}$, CLEO $\mathrm{E}_{\gamma}>2.0 \mathrm{GeV}$

Cut in photon energy

with cut $\mathrm{E}_{0}>\mathrm{E}_{\gamma}$ three relevant scales:
Neubert '04; Becher, Neubert '06
(hard) m_{b}
(jet) $\left(\Delta \mathrm{m}_{\mathrm{b}}\right)^{1 / 2}$
(soft) $\Delta=\mathrm{m}_{\mathrm{b}}-2 \mathrm{E}_{0} \approx 1 \mathrm{GeV}$
OPE in terms of $\left(\Lambda_{\mathrm{QCD}} / \Delta\right)^{\mathrm{n}}$ and $\alpha_{\mathrm{s}}(\Delta)$

$$
\Gamma \underset{\text { hard }}{\sim} H^{2} J \otimes \underset{\text { jot }}{H^{2}} J \otimes
$$

calculate NNLO corrections to multiscale OPE to resum large logarithms

NNLO estimate of Becher/Neubert '06 including effect of photon energy cut using the recent NNLO result of Misiak et. al '06

MFV MSSM at large tanß

Hall, Ratazzi, Sarid Babu,Kolda
Chankowski, Slawianowska Bobeth, Ewerth, Krüger, Urban Huang, Liao, Yan, Zhu Isidori, Retico
Dedes, Dreiner, Nierste
Dedes, Pilaftis
Chankowski, Rosiek
Foster, Okumura, Roszkowski

Key players

Specific pattern:
Babu, Kolda '02
$\mathrm{Br}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \sim(\tan \beta)^{6}$

$\Delta M_{s} \quad \sim\left(\Delta M_{s}\right)^{S M}-\mathrm{c}(\tan \beta)^{4}$
Buras, Chankowski, Rosiek, Slawianowska '02
$\mathrm{Br}\left(\mathrm{B}_{\mathrm{u}} \rightarrow \mathrm{T} \mathrm{V}\right) \sim \operatorname{Br}\left(\mathrm{B}_{\mathrm{u}} \rightarrow \mathrm{T} \mathrm{V}\right)^{S M}-\mathrm{d}(\tan \beta)^{2} \quad$ Isiddori, Paradisi ${ }^{06}$
$\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)$ chargino and $\mathrm{H}^{ \pm}$contributions tend to cancel for $A \cup<0$.
using UTfit '05 and CDF/D0 result; UTfit '06 -> 0.96
$\left(\Delta M_{s}\right)^{\exp } /\left(\Delta M_{s}\right)^{S M}=0.8 \pm 0.12$
$\left.R_{B T v}=\left(\operatorname{Br}\left(B_{u} \rightarrow T v\right)\right)^{\exp /(B r}\left(B_{u} \rightarrow T V\right)\right)^{s M}=0.7 \pm 0.3$

$B_{s} \rightarrow \mu^{+} \mu^{-}$vs. ΔM_{s}

Buras, Chankowski, Rosiek, Slawianowska '02
$\left(\Delta M_{s}\right)^{\exp /} /\left(\Delta M_{s}\right)^{S M}$

MFV-MSSM and large tan β
Isidori, Paradisi '06

MFV-MSSM and large tan β

Isidori, Paradisi `06

Outlook and conclusions

- We are puzzled by the flavour problem
- Rare K decays are very sensitive probe into TeV scale flavour violation. Best test of MFV and generically expect large deviations in non-MFV scenarios.
- Beginning of the era of precision flavour tests of NP
- Very interesting NP scenario Little Higgs with T parity: see C. Tarantino's talk for a discussion of the signatures.
- Theorist's nirvana: measure $K \rightarrow \pi \bar{\nu} \nu$ and $B_{s} \rightarrow \mu^{+} \mu^{-}$

