The Discovery Potential of rare K and B decays

Andreas Weiler TU Munich

Indirect measurements

'60 ΔM_K Lessons from the past: rare low energy processes like ΔM_K '87 ARGUS at Desy ΔM_{Bd} (charm), B_d - B_d osc. and EWPT (top), '9x LEP can tell us a lot about heavy particles prior to their discovery '99-now Belle/Babar Present SM works remarkably well, surprisingly also in the least understood sector: the flavor sector Future In order to test NP indirectly we need

theoretically very clean observables,

preferably with small SM contribution.

Flavour in the SM

Yukawas are responsible for flavour transitions

$$\mathscr{L}_{\text{Yukawa}} = \overline{Q}_L Y_D D_R H + \overline{Q}_L Y_U U_R (H)_c$$

$$Y_D = (m_d, m_s, m_b)/v$$
$$Y_U = V_{\rm CKM}^{\dagger}(m_u, m_c, m_t)/v$$

m_t >> m_i and V_{CKM} has a hierarchical structure

There are no FCNCs on tree level.

Flavour change is small $Y_D = (m_d, m_s, m_b)/v$ $Y_U = V_{\text{CKM}}^{\dagger}(m_u, m_c, m_t)/v$

 $Y_U \approx \begin{pmatrix} 10^{-5} & -0.002 & 0.007 + 0.004i \\ 10^{-6} & 0.007 & -0.04 + 0.0008i \\ 10^{-8} + 10^{-7}i & 0.0003 & 0.96 \end{pmatrix}$

We have no idea why Y_{\cup} and Y_{D} are the way they are. Generally, NP models are struggling since we have no theory of flavour.

We want NP to show up at around a TeV (Higgs stabilization). K-K mixing e.g. shows no generic flavour violation up to 10³ TeV.

Flavour precision tests

General structure of a decay rate

Energy scale

 Γ = (non-pert. QCD) x QCD RG x (V_{ckm} SM short dist.+ NP)

theoretical uncertainty

Three strategies for precision tests: 1) hadronic uncertainties cancel in asymmetries $A_{\rm CP}^{\rm mix}(B_s \to \psi \phi)$ partial cancelation: $Br(B_q \to \mu^+ \mu^-)/\Delta M_q$ 2) hadronic matrix element from Experiment $(K \to \pi \bar{\nu} \nu)$ 3) inclusive, non-perturbative ~ $(\Lambda_{\rm QCD}/m_b)^2$ $(B \to X_s \gamma)$

interesting Flavour channels

 $s \rightarrow d \sim \lambda^5 \quad \Delta M_K, \epsilon_K, \epsilon'/\epsilon, K_L \rightarrow \pi^0 \overline{l}l, K \rightarrow \pi \overline{\nu} \nu$ $b \rightarrow d \sim \lambda^3 \quad \Delta M_d, B_d \rightarrow \mu^+ \mu^-, B \rightarrow X_d \gamma$

 $b \rightarrow s \sim \lambda^{2} \quad \Delta M_{s}, B_{s} \rightarrow \mu^{+}\mu^{-}, B \rightarrow X_{s}l^{+}l^{-}, B \rightarrow X_{s}\gamma \quad A_{FB}(B \rightarrow X_{s}l^{+}l^{-}) \\ B \rightarrow K^{*}\gamma$

increasing SM contribution

theoretical error

< |5 % < |0% < 5%

interesting Flavour channels

 $s \rightarrow d \sim \lambda^5 \quad \Delta M_K, \epsilon_K, \epsilon'/\epsilon, K_L \rightarrow \pi^0 \bar{l}l, K \rightarrow \pi \bar{\nu} \nu$

$$b \rightarrow d \sim \lambda^3 \quad \Delta M_d, B_d \rightarrow \mu^+ \mu^-, B \rightarrow X_d \gamma$$

$$b \rightarrow s \sim \lambda^{2} \quad \Delta M_{s}, B_{s} \rightarrow \mu^{+}\mu, B \rightarrow X_{s}l^{+}l, B \rightarrow X_{s}\gamma \quad A_{FB}(B \rightarrow X_{s}l^{+}l^{-})$$
$$B \rightarrow K^{*}\gamma$$

increasing SM contribution

theoretical error

interesting Flavour channels

 $s \rightarrow d \sim \lambda^5 \quad \Delta M_K, \epsilon_K, \epsilon'/\epsilon, K_L \rightarrow \pi^0 \overline{l}l, K \rightarrow \pi \overline{\nu} \nu$

$$b \rightarrow d \sim \lambda^3 \quad \Delta M_d, B_d \rightarrow \mu^+ \mu^-, B \rightarrow X_d \gamma$$

$$b \rightarrow s \sim \lambda^{2} \quad \Delta M_{s,} (B_{s} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{s} l^{+} l^{-})$$
$$B \rightarrow X_{s} \gamma \quad A_{FB} (B \rightarrow X_{s} l^{+} l^{-})$$
$$B \rightarrow K^{*} \gamma$$

increasing SM contribution

theoretical error

interesting Flavour channels

$$s \rightarrow d \sim \lambda^{5} \quad \Delta M_{K}, \epsilon_{K}, \epsilon'/\epsilon, K_{L} \rightarrow \pi^{0} \bar{l}l, K \rightarrow \pi \bar{\nu} \nu$$

$$b \rightarrow d \sim \lambda^{3} \quad \Delta M_{d}, B_{d} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{d} \gamma$$

$$b \rightarrow s \sim \lambda^{2} \quad \Delta M_{s}, B_{s} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{s} l^{+} l^{-}, B \rightarrow X_{s} \gamma A_{FB}(B \rightarrow X_{s} l^{+} l^{-})$$

$$B \rightarrow K^{*} \gamma$$
inc

increasing SM contribution

theoretical error

Comparison of sensitivities

D'Ambrosio, Giudice, Isidori, Strumia '02; Buras, Bryman, Isidori, Littenberg '05

plan of the talk

- Interesting NP flavour observables of the future
- rare Kaon decays: the four golden modes, status of the SM calculation, NP searches
- $B \rightarrow X_s \gamma$ (new result)
- rare B decays and large tanß
- Conclusions

4 golden modes

 $egin{aligned} Br(K_L & o \pi^0 \mu^+ \mu^-) \ Br(K_L & o \pi^0 e^+ e^-) \ Br(K^+ & o \pi^+
u ar
u) \ Br(K_L & o \pi^0
u ar
u) \end{aligned}$

24 carat

4 golden modes

 $Br(K_L \to \pi^0 \mu^+ \mu^-)$ $Br(K_L \to \pi^0 e^+ e^-)$ $Br(K^+ \to \pi^+ \nu \bar{\nu})$ $Br(K_L \to \pi^0 \nu \bar{\nu})$

24 carat

60-€!

Potential of $K \to \pi \nu \bar{\nu}$

+ box

Dominated by short distance contributions o sigma(K⁺)_{theory} ~ 4% o sigma(K_L)_{theory} ~ 2%

Potential of $K \to \pi \nu \bar{\nu}$

+ box

$$A(K^+ \to \pi^+ \nu \bar{\nu}) = B_+ \left(\lambda_c \tilde{P}_c + \lambda_t X(v) \right)$$
$$A(K_L \to \pi^0 \nu \bar{\nu}) = B_L \operatorname{Im} \left[\lambda_t X(v) \right]$$

 $\lambda_t = V_{\rm ts}^* V_{\rm td} \quad \lambda_c = V_{\rm cs}^* V_{\rm cd}$

B₊ and **B**_L from $K^+ \rightarrow \pi^0 e^+ \nu$

Dominated by short distance contributions o sigma(K⁺)_{theory} ~ 4% o sigma(K_L)_{theory} ~ 2%

Potential of $K \to \pi \nu \bar{\nu}$

+ box

 $A(K^+ \to \pi^+ \nu \bar{\nu}) = B_+ \left(\lambda_c \tilde{P}_c + \lambda_t X(v)\right)$ $A(K_L \to \pi^0 \nu \bar{\nu}) = B_L \operatorname{Im} [\lambda_t X(v)]$

 $\lambda_t = V_{\rm ts}^* V_{\rm td} \quad \lambda_c = V_{\rm cs}^* V_{\rm cd}$ B+ and B_L from $K^+ \rightarrow \pi^0 e^+ \nu$

pure short-distance

Dominated by short distance contributions o sigma(K⁺)_{theory} ~ 4% o sigma(K_L)_{theory} ~ 2%

SM Calculation

General properties

$$\mathcal{L}_{eff}^{(6)} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{2\pi s_W^2} \sum_{i=u,c,t} C^i(\mu) Q_{\nu}^{(6)}$$
$$Q_{\nu}^{(6)} = \sum_{l=e,\mu,\tau} (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_{lL} \gamma^{\mu} \nu_{lL})$$

$${}^{i}(M_{W}) \propto m_{i}^{2} V_{is}^{*} V_{id} \propto \begin{cases} \Lambda_{
m QCD}^{2} \lambda & \mu_{c}^{2} (\lambda + i\lambda^{5}) & \mu_{c}^{2} (\lambda + i\lambda^{5}) & \mu_{c}^{2} (\lambda^{5} + i\lambda^{5}) & \mu_{c}^{2} (\lambda^$$

* Z penguin is $SU(2)_{L}$ breaking: powerlike GIM * large CPV phase in dominant top contribution

* charm effects: 1) negligible in $K_L: O(m_c^2/m_t^2) <<1$ for dominant direct CPV-Amplitude 2) small in $K^+ \sim 30\%$ (\rightarrow next to next slide)

SM prediction of $K_L \to \pi^0 \nu \bar{\nu}$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left[\frac{\operatorname{Im} \left(V_{ts}^* V_{td} \right)}{\lambda^5} X \right]^2$$
$$\kappa_L = r_{K_L} \frac{3\alpha^2 \mathcal{B}(K^+ \to \pi^0 e^+ \nu_e)}{2\pi^2 s_W^4} \frac{\tau(K_L)}{\tau(K^+)}$$

* short distance dominated (>99%)
* very small theoretical error ~ 2%
* 85% of total error CKM input
* precise and direct measurement of amount of CPV in SM

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.93 \pm 0.44) \times 10^{-11}$$

Buras, Gorbahn, Haisch, Nierste '06

Br_{exp} / Br_{SM} <2.86 10⁴ (90% C.L.) E391

KTEV, E391a (soon to be improved!)

SM prediction of $K_L \to \pi^0 \nu \bar{\nu}$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left[\frac{\operatorname{Im} \left(V_{ts}^* V_{td} \right)}{\lambda^5} X \right]^2$$
$$\kappa_L = r_{K_L} \frac{3\alpha^2 \mathcal{B}(K^+ \to \pi^0 e^+ \nu_e)}{2\pi^2 s_W^4} \frac{\tau(K_L)}{\tau(K^+)}$$

$$X = 1.46 \pm 0.04$$
 (NLO)

Buchalla & Buras '93, '99; Misiak & Urban '99

* short distance dominated (>99%)
* very small theoretical error ~ 2%
* 85% of total error CKM input
* precise and direct measurement of amount of CPV in SM

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.93 \pm 0.44) \times 10^{-11}$$

Buras, Gorbahn, Haisch, Nierste '06

Br_{exp} / Br_{SM} <2.86 10⁴ (90% C.L.) E391

KTEV, E391a (soon to be improved!)

SM prediction of $K_L \to \pi^0 \nu \bar{\nu}$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left[\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right]^2$$
$$\kappa_L = r_{K_L} \frac{3\alpha^2 \mathcal{B}(K^+ \to \pi^0 e^+ \nu_e)}{2\pi^2 s_W^4} \frac{\tau(K_L)}{\tau(K^+)}$$

* short distance dominated (>99%)
* very small theoretical error ~ 2%
* 85% of total error CKM input
* precise and direct measurement of amount of CPV in SM

$$X = 1.46 \pm 0.04$$
 (NLO)

Buchalla & Buras '93, '99; Misiak & Urban '99

$$r_{K_L} = 0.944 \pm 0.028$$

isospin

Marciano & Parsa '96

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.93 \pm 0.44) \times 10^{-11}$$

Buras, Gorbahn, Haisch, Nierste '06

Br_{exp} / Br_{SM} <2.86 10⁴ (90% C.L.) E391

KTEV, E391a (soon to be improved!)

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

 * theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation
 * P_c error now dominated by ∆m_c Buras, Gorbahn, Haisch, Nierste '05

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\mathrm{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\mathrm{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\mathrm{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

 * theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation
 * P_c error now dominated by ∆m_c Buras, Gorbahn, Haisch, Nierste '05

 $\Delta m_{c} \quad theory \quad \alpha_{S}$ $P_{c}^{NLO} = 0.369 \pm 0.033 \pm 0.037 \pm 0.009 \approx 0.37 \pm 0.07$ Buchalla, Buras '94 $P_{c}^{NNLO} = 0.375 \pm 0.031 \pm 0.009 \pm 0.009 \approx 0.38 \pm 0.04$ Buras, Gorbahn, Haisch, Nierste '05

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

* theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation
* P_c error now dominated by ∆m_c Buras, Gorbahn, Haisch, Nierste '05

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

* theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation
* P_c error now dominated by ∆m_c Buras, Gorbahn, Haisch, Nierste '05

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left[\left(\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right)^2 + \left(\frac{\operatorname{Re}(V_{ts}^* V_{td})}{\lambda^5} X + \frac{\operatorname{Re}(V_{cs}^* V_{cd})}{\lambda} (P_c + \delta P_c) \right)^2 \right]$$

 * theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation
 * P_c error now dominated by △m_c Buras, Gorbahn, Haisch, Nierste '05

* LD and dim8 effects in δP_c are ~ $\pi^2 F_{\pi^2/m_c^2} \sim 10\%$ of charm contribution, 6% enhancement of Br_{K^+} Isidori, Mescia & Smith '05 * LQCD could improve accuracy to 1-2% Isidori, Martinelli & Turchetti '05

 $\delta P_{c} = 0.04 \pm 0.02$

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.0 \pm 1.1) \times 10^{11}$ Buras, Gorbahn, Haisch, Nierste '05

* theoretical error of QCD corrections to the charm contribution P_c factor ~4 smaller thanks to NNLO calculation * P_c error now dominated by Δm_c Buras, Gorbahn, Haisch, Nierste '05

$$\mathcal{B}_{\exp}^{+} = \left(14.7^{+13.0}_{-8.9}\right) \times 10^{11}$$

E787 (2), E949 (1)

* LD and dim8 effects in δP_c are $O(\pi^2 F_{\pi^2}/m_c^2) \sim 10\%$ of charm Isidori, Mescia & Smith '05 contribution, 6% enhancement of Br_K^+ * LQCD could improve accuracy to 1-2% Isidori, Martinelli & Turchetti '05

MFV

SM Yukawa couplings are the only source of flavour violation.

All flavour violation is proportional to V_{CKM} .

Strong correlations between K and B physics.

K⁺ and K_L in specific MFV models

Littlest Higgs: slight suppression

Buras, Uhlig, Poschenrieder '05

• Universal ED: <9-10% enhancement

Buras, AW, Spranger '03

CMFV MSSM: 0...40% suppression

Buras, Gambino, Gorbahn, Jäger, Silvestrini '00

General pattern: NP contribution to ΔM_d interferes constructively with SM $\Delta F = 2$ Amplitude S in the above models and

$$\left(\frac{V_{\rm td}^{\rm NP}}{V_{\rm td}^{\rm SM}}\right)^2 = \frac{S^{\rm SM}}{S^{\rm SM} + |\Delta S^{\rm NP}|} < 1$$

 $Br(K)_{exp} > Br(K)_{SM}$ immediately falsifies most MFV models!

MFV upper bound

model independent

95%C.L. upper bound

Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW '05

Universal CKM fit from UTfit

Bona et. al '05

using universal UTfit +

 $B \rightarrow X_s \gamma + B \rightarrow X_s |^+|^-$

MFV upper bounds

Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW (05)

Branching Ratios	MFV (95%)	SM (95%)	SM (68%)	Exp			
$\operatorname{Br}(\mathrm{K}^{+} \to \pi^{+} \nu \overline{\nu}) \cdot 10^{11}$	<11.9	<10.9	8.3±1.2	$14.7^{+13.0}_{-8.9}$	BNL AGS E787, E949		
$Br(K_L \rightarrow \pi^0 \nu \overline{\nu}) \cdot 10^{11}$	<4.6	<4.2	3.1±0.6	<2.8	2.86 10⁴ (90% C.L.) E391		
$Br(B \to X_{\rm S} \nu \overline{\nu}) \cdot 10^5$	<5.2	<4.1	3.7±0.2	<64			
$Br(B_{s} \rightarrow \mu^{+}\mu^{-}) \cdot 10^{9}$	<7.4	<5.9	3.7±1.0	<80	(90% C.L.) CDF		
$Br(B_{d} \rightarrow \mu^{+}\mu^{-}) \cdot 10^{10}$	<2.2	<1.8	1.1±0.4	<1.6·10 ³			

low/moderate tanß !

Beyond MFV

rare K decays are a very sensitive probe for non-MFV flavour violation since

 $(s \rightarrow d) \sim \lambda^5$

suppression is not built in the model anymore.

Generic MSSM

Nir & Worah '97 Buras, Romanino, Silvestrini '97 Colangelo & Isidori '98

Buras, Ewerth, Jäger, Rosiek '04 Isidori, Mescia, Paradisi, Smith, Trine '06

- Flavor structure probes Susy breaking mechanism
- Room for sizable deviations even if $\Delta F=2$ sector agrees well with SM
- very sensitive to new sources of flavor symmetry breaking due to λ^5 suppression of SM amplitude

Amplitude SU(2)
$$\propto \frac{1}{M_Z^2} V_{Z\bar{s}d}$$

$$\tilde{X}_{\rm SUSY}^{\rm (peng)} \propto \frac{(M_{LR}^2)_{d't} (M_{LR}^2)_{s't}^*}{M_{\rm SUSY}^4}$$

small tanß

Generic MSSM

Buras, Ewerth, Jäger, Rosiek '04

includes all present constraints $\Delta M_K, \in_K, b \rightarrow s\gamma,...$

saturation of Grossman-Nir bound

K_L could be 20-30x enhanced

in reach of E391a

Generic MSSM II

Isidori, Mescia, Paradisi, Smith, Trine '06

K⁺ best probe of up-type trilinear soft Susy breaking terms $\mathcal{L}_{\text{soft}} \subset (A^U Y^U)_{ij} Q_L^i U_R^j \phi$

CKM and rare K decays

$$(\sin 2\beta)_{\psi K_S} = (\sin 2\beta)_{\pi\nu\bar{\nu}}$$

test of the 'golden relation'

Could help improve the knowledge of CKM parameters

However, more interesting is the 201x scenario:

* CKM known to great precision independent of NP from Belle, BaBar, LHCb, SuperB, ...

* SM prediction for K⁺, K_L together with a 10% measurement allows precision test of the flavor structure of NP

Status of $K_{L} \rightarrow \pi^{0}$ [+]-

Buchalla, D'Ambrosio, Isidori; Isidori, Smith, Unterdorfer '04, Smith, Mescia, Trine '06

$$Br(K_L \to \pi^0 l^+ l^-) = \left[C_{\text{mix}}^l + C_{\text{int}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right) + C_{\text{dir}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right)^2 + C_{\text{CPC}}^l \right] \cdot 10^{-12}$$

	indirect CPV	interference direct and ine	e of direct	direct CPV	CP conservir	ng
tantial progres	s in	$C_{\rm dir}^e = (4.62$	$\pm 0.24)(\omega_{7V}^2$	$_{V}+\omega_{7A}^{2})~C_{\mathrm{dir}}^{\mu}=$	$= (1.09 \pm 0.05)(\omega)$	$c_{7V}^2 + 2.32\omega_{7A}^2)$
ry precision		$C_{\rm int}^e = (11.3$	$\pm 0.3)\omega_{7V}$,	$C^{\mu}_{ m int}$ =	$= (2.63 \pm 0.06)\omega_7$	$V \; ,$
ciated with lig	ht quar	$C_{\rm mix}^e = 14.5$	± 0.05 ,	C^{μ}_{mix}	$= 3.36 \pm 0.20$,	
S experimental inpu	it from NA4	$C_{\rm CPC}^e \simeq 0 ,$		$C^{\mu}_{ m CPC}$	$5 = 5.2 \pm 1.6$,	
		\sim 11			-10 - 10	
$L \to \pi^0 \mu^+ \mu^-) =$	(1.5 ± 0)	$(.3) \cdot 10^{-11}$	Ex	p: < 2	$2.8 \cdot 10^{-10}$	KIEV '00
$_L \to \pi^0 e^+ e^-) =$	$(3.7^{+1.1}_{-0.9})$	$() \cdot 10^{-11}$	@ 90%	5 C.L.	$3.8 \cdot 10^{-10}$	KTEV '03

 $Br(K_L \to \pi^0 \mu^+ \mu^-) = (1.5 \pm 0.3) \cdot 10^{-10}$ $Br(K_L \to \pi^0 e^+ e^-) = (3.7^{+1.1}_{-0.9}) \cdot 10^{-11}$

subs

theo

asso

loop

Status of $K_L \rightarrow \pi^0 I^+ I^-$

Buchalla, D'Ambrosio, Isidori; Isidori, Smith, Unterdorfer '04, Smith, Mescia, Trine '06

$$Br(K_L \to \pi^0 l^+ l^-) = \left[C_{\text{mix}}^l + C_{\text{int}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right) + C_{\text{dir}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right)^2 + C_{\text{CPC}}^l \right] \cdot 10^{-12}$$

indirectinterference ofCPVdirect and indirect

CP conserving

direct

CPV

Direct CPV amplitude: * clean probe of independent NP structures and CPV beyond SM * important if beyond-MFV NP is found

Status of $K_L \rightarrow \pi^0 I^+ I^-$

Buchalla, D'Ambrosio, Isidori; Isidori, Smith, Unterdorfer '04, Smith, Mescia, Trine '06

$$Br(K_L \to \pi^0 l^+ l^-) = \left[C_{\text{mix}}^l + C_{\text{int}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right) + C_{\text{dir}}^l \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right)^2 + C_{\text{CPC}}^l \right] \cdot 10^{-12}$$

indirect interfe CPV direct a

interference of direct and indirect

CP conserving

direct

CPV

NP

Direct CPV amplitude: * clean probe of independent NP structures and CPV beyond SM * important if beyond-MFV NP is found

 $\frac{K_{\rm L}}{Z,\gamma^*} e^{-\frac{\pi^0}{e^-}}$ The action of Z⁰, γ Penguins Q_{ν}, Q_{9V}, Q_{10A}

$B \to X_s \gamma$ new NNLO results

$B \to X_s \gamma$

Charm mass dependence enters first at NLO: Strong scheme ambiguity in m_c/m_b only be resolved at NNLO

very involved calculation

M. Misiak,^{1,2} H. M. Asatrian,³ K. Bieri,⁴ M. Czakon,⁵ A. Czarnecki,⁶ T. Ewerth,⁴
A. Ferroglia,⁷ P. Gambino,⁸ M. Gorbahn,⁹ C. Greub,⁴ U. Haisch,¹⁰ A. Hovhannisyan,³
T. Hurth,^{2,11} A. Mitov,¹² V. Poghosyan,³ M. Ślusarczyk,⁶ and M. Steinhauser⁹

3-loop matching (complete)
 3 and 4-loop mixing (almost)
 most difficult: 3-loop matrix element (interpolation between m_c/m_b>>1 and α_S²n_F approximation)

Cut in photon energy

BaBar $E_{\gamma} > 1.9$ GeV, CLEO $E_{\gamma} > 2.0$ GeV

Cut in photon energy

Neubert '04; Becher, Neubert '06

with cut $E_0 > E_\gamma$ three relevant scales:

(hard) m_b (jet) $(\Delta m_b)^{1/2}$ (soft) $\Delta = m_b - 2E_0 \approx I \text{ GeV}$

OPE in terms of $(\Lambda_{QCD}/\Delta)^n$ and $\alpha_s(\Delta)$

$$\Gamma \sim H^2 J \otimes S$$
hard jet soft

calculate NNLO corrections to multiscale OPE to resum large logarithms

$$\frac{\operatorname{Br}(B \to X_s \gamma)_{\exp}}{\operatorname{Br}(\bar{B} \to X_s \gamma)_{\text{th}}} = 1.19 \pm 0.09_{\exp} \pm 0.10_{\text{th}}$$

NNLO estimate of Becher/Neubert '06 including effect of photon energy cut using the recent NNLO result of Misiak et. al '06

MFV MSSM at large tanß

Hall, Ratazzi, Sarid Babu,Kolda Chankowski, Slawianowska Bobeth, Ewerth, Krüger, Urban Huang, Liao, Yan, Zhu Isidori, Retico Dedes, Dreiner, Nierste Dedes, Pilaftis Chankowski, Rosiek Foster, Okumura, Roszkowski

Key players

Specific pattern:

Babu, Kolda '02 $Br(B_s \rightarrow \mu^+ \mu^-) \sim (tan\beta)^6$ $\Delta M_s \sim (\Delta M_s)^{SM} - c (tan\beta)^4$

Buras, Chankowski, Rosiek, Slawianowska '02

 $Br(B_u \rightarrow \tau \nu) \sim Br(B_u \rightarrow \tau \nu)^{SM} - d (tan B)^2$ Isidori, Paradisi '06

 $Br(B \rightarrow X_s \gamma)$ chargino and H^{\pm} contributions tend to cancel for $A_{\cup} < 0$.

using UTfit '05 and CDF/D0 result; UTfit '06 -> 0.96

 $(\Delta M_s)^{exp}/(\Delta M_s)^{SM} = 0.8 \pm 0.12$ $R_{BTV} = (Br(B_u \rightarrow \tau v))^{exp}/(Br(B_u \rightarrow \tau v))^{SM} = 0.7 \pm 0.3$

pre-ICHEP 06, post-ICHEP -> R=0.85

Buras, Chankowski, Rosiek, Slawianowska '02

MFV-MSSM and large tanß

MFV-MSSM and large tanß

Outlook and conclusions

- We are puzzled by the flavour problem
- Rare K decays are very sensitive probe into TeV scale flavour violation. Best test of MFV and generically expect large deviations in non-MFV scenarios.
- Beginning of the era of precision flavour tests of NP
- Very interesting NP scenario Little Higgs with T parity: see C. Tarantino's talk for a discussion of the signatures.

• Theorist's nirvana: measure $K \to \pi \bar{\nu} \nu$ and $B_s \to \mu^+ \mu^-$