K_{e4} decays and Wigner cusp

Lucia Masetti

Johannes Gutenberg-Universität Mainz, Germany

International Conference "Heavy Quarks and Leptons" Munich, 17th October 2006

On behalf of the NA48/2 collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Wien

Outline

Introduction

- Physics motivation
- The NA48/2 experiment: beamline and detector

$2 \quad K^{\pm} \to \pi^+ \pi^- e^{\pm} \nu_e$

• Form factors and $\pi\pi$ scattering lengths

$(3) K^{\pm} \to \pi^0 \pi^0 e^{\pm} \nu_e$

Branching fraction and form factors

$4 \quad K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$

- The "cusp" effect
- Slopes and $\pi\pi$ scattering lengths

Conclusions

$\pi\pi$ scattering lengths: why and how measure them?

WHY?

- Very precise theoretical predictions from χPT (2%) and generalised χPT , depending only on one free parameter: the quark condensate $\langle \bar{q}q \rangle_0$
- $\langle \bar{q}q \rangle_0$ must be determined experimentally
- The size of $\langle \bar{q}q \rangle_0$ determines the order at which mass terms appear in the perturbative expansion

HOW?

- K_{e4} ($K \rightarrow \pi \pi e \nu$): no other hadrons, pions close to threshold No theoretical uncertainty on the form factors, only on $a_0^2 = f(a_0^0)$
- $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$: "cusp" at $M_{00}^2 = 4m_{\pi^+}^2$ due to rescattering Theoretical uncertainty of the Cabibbo-Isidori model: 5%

・ 伊 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Simultaneous K^+ and K^- beams with $p_K = (60 \pm 3) \text{ GeV}/c$ to measure charge asymmetry in $K \rightarrow 3\pi$ decays

 K_{e4} and $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ in NA48/2

< ロ > < 同 > < 回 > < 回 >

The NA48/2 detector

 $K_{\rm e4}$ and $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ in NA48/2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Selection criteria and reconstruction

- 3 tracks building a good vertex
- 1 electron with the same charge as the vertex (E/p and Linear Discriminant Analysis)
- Missing p_T : elliptical cut in the $(p_T, M_{3\pi})$ plane

Two reconstruction strategies:

- Assume kaon mass, extract kaon momentum (quadratic equation)
- Assume kaon momentum, extract kaon mass (linear equation)

Final sample: ~ 370,000 selected events

Lucia Masetti

 $\pi^{0}\pi^{0}\pi^{\pm}$ K_{a4} and K^{\pm} in NA48/2

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Background estimate

Expectation from MC simulation:

Channel	Rejection	Level
$K^{\pm} ightarrow \pi^+ \pi^- \pi^{\pm}$ with $\pi ightarrow e u$	Vertex selection	$\sim 0.2\%$
$\mathcal{K}^{\pm} ightarrow \pi^{+}\pi^{-}\pi^{\pm}$ with π mis-ID	LDA, ellipse (p_T)	\sim 0.2%
$K^{\pm} ightarrow \pi^{\pm}\pi^{0}_{D}$ and $K^{\pm} ightarrow \pi^{0}_{D}\pi^{0}\pi^{\pm}$	<i>E/p</i> for pion-ID	< 0.01%

Estimate from DATA:

"Wrong sign" events $(\pi^{\pm}\pi^{\pm}e^{\mp}\nu_{e})$ can only be background $(\Delta S = \Delta Q \text{ rule})$

Factor 2 scaling applied to background from $K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$

Estimated background: $\sim 0.5\%$ of the signal, in agreement with the expectation

・ 同 ト ・ ヨ ト ・ ヨ

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Form factor parametrisation

Kinematic variables

Matrix element

- *Μ*_{ππ}
- *M*_e_ν
- $\cos \theta_{\pi}$ (in the $\pi\pi$ cm system)
- $\cos \theta_e$ (in the $e\nu$ cm system)
- φ (angle between the ππ and eν planes in the K cm system)

$$T = \frac{G_F}{\sqrt{2}} V_{us}^* \bar{u}(p_\nu) \gamma_\mu (1 - \gamma_5) v(p_e) (V^\mu - A^\mu)$$

Form factors

$$F = F_s e^{i\delta_0^0} + F_\rho e^{i\delta_1^1} \cos \theta_{\pi}$$

$$G = G_\rho e^{i\delta_1^1}$$

$$H = H_\rho e^{i\delta_1^1}$$

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Fit strategy

- A grid of $10 \times 5 \times 5 \times 5 \times 12 = 15000$ equal population bins was defined in the 5-dimensional space of the kinematic variables, separately for K^+ and K^-
- In the first step **10 independent 5 parameter** (F_s , F_p , G_p , H_p , δ) fits were performed for each bin in $M_{\pi\pi}$, minimising a log-likelihood estimator that takes into account also the limited MC statistics
- In the second step the 5 sets of points were fitted with a **polynomial in powers of** $q^2 = \frac{s}{4m_{\pi}^2} 1$, truncating the expansion according to the sensitivity
- The dependence on M_{ev} was found to be negligible within the total uncertainty and a possible f_e term was not included in the fit
- The *D*-wave contribution was also found to be negligible within the statistical uncertainty and was excluded from the fit

Lucia Masetti

HQL 2006 9 / 20

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: F, G and H

 $K_{\rm e4}$ and $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm} \underline{\text{in NA48/2}}$

HQL 2006 10 / 20

$K^{\pm} \rightarrow \pi^+ \pi^- e^{\pm} \nu_e$: a_0^0 and a_0^2

The $\delta = \delta_0^0 - \delta_1^1$ distribution was fitted with a **1 parameter** (a_0^0) function given by the numerical solution of the Roy equations in Phys. Rept. 353, 207

 a_0^0 and a_0^2 were constrained to lie on the **centre of the universal band**

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Data/MC comparison after the fit

 $K_{\rm e4}$ and $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ in NA48/2

HQL 2006 12 / 20

Lucia Masetti

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$: Systematics and preliminary result

Systematic checks

- Two independent analyses with different reconstruction methods, acceptance corrections, fit methods and MC parameters
- Stability of acceptance vs time (variation of the simulated beam conditions)
- Uncertainty on background estimate (checked with data and MC)
- Uncertainty on electron-ID efficiency (variation of LDA cut)
- Uncertainty on radiative corrections (fraction of total effect with or w/o PHOTOS)
- Bias from neglected s_e dependence (MC tests)

NA48/2 preliminary result (2003 data)

 $f_s'/f_s = 0.169 \pm 0.009_{stat} \pm 0.034_{syst}$ $f_{s}''/f_{s} = -0.091 \pm 0.009_{stat} \pm 0.031_{syst}$ $f_p/f_s = -0.047 \pm 0.006_{stat} \pm 0.008_{syst}$ $0.891 \pm 0.019_{stat} \pm 0.020_{svst}$ $g_p/f_s =$ $g'_{\rm p}/f_{\rm s}=0.111\pm0.031_{\rm stat}\pm0.032_{\rm syst}$ $h_p/f_s = -0.411 \pm 0.027_{stat} \pm 0.038_{syst}$ a_{0}^{0} $= 0.256 \pm 0.008_{stat} \pm 0.007_{syst}$ \pm 0.018_{theor}

$K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu_e$: Selection and background estimate

- 4 photons compatible with two π^0 at the same vertex
- 1 electron track (E/p and shower width)
- Missing p_T : elliptical cut in the $(p_T, M_{3\pi})$ plane
- Using kaon momentum of 60 GeV/c along z, compute kaon mass (linear equation)

Background

Estimated from data (reversing cuts):

 $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ with pion mis-ID

 $K^{\pm} \rightarrow \pi^0 e^{\pm} \nu_e \gamma$ + accidental photon

Total contamination: $\sim 3\%$

Selected events

 K_{e4}^{00} candidates: 9642, with a background contamination of 276 \pm 94 Normalisation ($K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$) $\sim 8 \times 10^6$, negligible background

Systematic uncertainties

Acceptance, trigger efficiency and energy measurement of the calorimeter

NA48/2 preliminary result (2003 data)

 $BR(K_{e4}^{00}) = (2.587 \pm 0.026_{stat} \pm 0.019_{syst} \pm 0.029_{ext}) \times 10^{-5}$

$K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu_e$: Form factors

Same formalism as for K_{e4}^{+-} , but, for the symmetry of the $\pi^0 \pi^0$ system, **no** *P*-wave!

Effect of cusp at $M_{00}^2 = 4m_{\pi^+}^2$ taken into account, 37,700 events used

NA48/2 preliminary result (2003+2004 data) $f'_{s}/f_{s} = 0.129 \pm 0.036_{stat} \pm 0.020_{syst}$ $f''_{s}/f_{s} = -0.040 \pm 0.034_{stat} \pm 0.020_{syst}$

$K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$: Cusp in the M_{00}^2 distribution

Selected events (2003): 23×10^6 M_{00}^2 computed imposing the mean vertex of the π^0 's (improved resolution close to threshold)

Evidence for a cusp at $M_{00}^2 = 4m_{\pi^+}^2$ due to $\pi\pi$ rescattering

S Κ⁺ π⁺ π⁰ π⁻ π⁰

Fit to the Cabibbo-Isidori model (JHEP03 021):

 $M_0 = A_0(1 + \frac{1}{2}g_0u + \frac{1}{2}h'u^2)$

Phys. Lett. B 633 (2006) 173

$$\begin{array}{rcl} g_0 &=& 0.645 \pm 0.004_{stat} \pm 0.009_{syst} \\ h' &=& -0.047 \pm 0.012_{stat} \pm 0.011_{syst} \\ a_2 &=& -0.041 \pm 0.022_{stat} \pm 0.014_{syst} \\ a_0 - a_2 &=& 0.268 \pm 0.010_{stat} \pm 0.004_{syst} \\ &\pm& 0.013_{theor} \end{array}$$

∃ >

 $K_{\rm e4}$ and $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ in NA48/2

HQL 2006 17 / 20

$K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$: $k' v^2$ term

Fit in two steps

Fit the modified matrix element

 $M_0 = A_0(1 + \frac{1}{2}g_0u + \frac{1}{2}h'u^2 + \frac{1}{2}k'v^2)$

above the cusp in the plane $\cos \theta$ vs $M_{00}^2 \cos \theta$ = angle between π^+ and π^0 in $\pi^0 \pi^0$ cm

Reweight the MC with the obtained value of k' and fit the M²₀₀ distribution with the Cabibbo-Isidori model to obtain the cusp parameters

Lucia Masetti

Systematic checks:

Acceptance, trigger efficiency

NA48/2 preliminary result (2003 data)

 $k' = 0.0097 \pm 0.0003_{stat} \pm 0.0008_{syst}$

Note: h' and k' are not the same as the PDG parameters

Comparison of the scattering length results

New results **compatible** with theory and previous measurements

 K_{e4} : higher sensitivity than BNL E865 (higher statistics at high $M_{\pi\pi}$)

Conclusions

• Form factor and $\pi\pi$ scattering length measurement from K_{e4}^{+-} $a_0^0 = 0.256 \pm 0.008_{stat} \pm 0.007_{syst} \pm 0.018_{theor}$

Compatible with χPT prediction and previous results, higher sensitivity

Branching ratio and form factor measurements from K⁰⁰_{e4}

 $BR(K_{e4}^{00}) = (2.587 \pm 0.026_{stat} \pm 0.019_{syst} \pm 0.029_{ext}) \times 10^{-5}$

BR: factor 8 better than latest measurement Form factors: compatible with charged channel

• $\pi\pi$ scattering length and slope measurements from $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$

 $a_0 - a_2 = 0.268 \pm 0.010_{stat} \pm 0.004_{syst} \pm 0.013_{theor}$

• First evidence for a value of $k \neq 0$ in the $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ Dalitz plot $k' = 0.0097 \pm 0.0003_{stat} \pm 0.0008_{syst}$

イロン 不良 とくほう イヨン 一足