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Hadronic B decays

M. Beneke
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Sommerfeldstr. 28

D - 52074 Aachen, Germany

I briefly summarize the factorization approach to hadronic B decays emphasizing the-
oretical results that have become available recently. The discussion of its application
to data is abridged, and only the determination of γ = (71±5)◦ from time-dependent
CP asymmetries is included in some detail.

1 Introduction

Many observables at the B factories are connected with branching fractions, CP
asymmetries and polarization of exclusive, hadronic B decays. They provide access
to the flavour and spin structure of the weak interaction, but a straightforward in-
terpretation is usually obscured by the strong interaction. In technical terms, the
difficult (long-distance) part of the strong interaction resides in the matrix elements
〈f |Oi|B〉, where Oi is an operator in the effective weak interaction Lagrangian.

Systematic approaches to hadronic B decays are based on expansions in small
parameters. The two available options exploit approximate flavour symmetries (ex-
pansion parameter mq/Λ, mq a light quark mass), or the large energy transfer in
B decays (expansion parameter Λ/mb), resulting in two frameworks – “SU(3)” and
“Factorization” – that could hardly be different methodically and technically. In
practice, both frameworks are implemented only at the leading order, and additional
assumptions are usually necessary (neglecting “small” amplitudes; estimating Λ/mb

corrections). Despite this restriction, there has been much progress by applying and
working out these theories over the past few years. In the following I focus on the
factorization approach. Furthermore, f will be assumed to be a charmless, two-body,
meson final state; the mesons are assumed to be pseudoscalar or vector mesons from
the ground state nonet.

2 Theory of hadronic decays (factorization)

The starting point is the investigation of Feynman diagrams with external collinear
lines (energetic, massless lines with momenta nearly parallel to one of the two fi-
nal state mesons, M1 or M2), one nearly on-shell heavy-quark line, and soft lines
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(representing the light degrees of freedom in the B meson). The simultaneous rel-
evance of collinear and soft configurations implies three relevant scales: mb,

√
mbΛ,

and Λ. In the heavy-quark limit the first two are perturbative, and only the third is
long-distance. Factorization amounts to showing that the long-distance contributions
to the matrix elements 〈[c1][c2]|Oi|[s]〉 are actually contained in the simpler matrix
elements 〈[c1]|(qb)(0)|[s]〉 (form factors), 〈[ci]|q(x)q(0)|0〉, and 〈0|q(x)b(0)|[s]〉 (light-
cone distribution amplitudes). It is then assumed that if this holds perturbatively to
all orders for all quark-gluon matrix elements, then it does for the hadronic matrix
elements.

Factorization in a similar form was first applied to B decays in [1] as a phe-
nomenological approximation akin to the vacuum saturation approximation for the
four-quark operator matrix elements relevant to BB mixing. Intuitively, factorization
might work, because the partons that eventually form the meson M2 that does not
pick up the spectator quark escape the B remnant as an energetic, low-mass, colour-
singlet system, and hadronize far away and therefore independently from the remnant.
This qualitative argument was given in [2] for the decay Bd → D+π−. In [3] it was
shown to hold for charmless decays, where the disruption of the B meson is much
more violent, and a calculational framework was provided, in which the phenomeno-
logical factorization approach was contained as a leading-order approximation. At
the same time, the next-to-leading order corrections were computed.

The new factorization formula included a new mechanism, spectator-scattering,
where a hard-collinear interaction with the soft remnant takes place. Thanks to the
development of soft-collinear effective theory (SCET), this mechanism is now much
better understood. In the following I sketch the rederivation of the factorization
formula in SCET [4–6].

Integrating out fluctuations on the scale mb at leading power in the Λ/mb ex-
pansion amounts to an analysis of the structure of hard subgraphs with external
hard-collinear, collinear and soft lines. Those identified as leading are then calculated
perturbatively in αs(mb). Formulated as an operator matching equation from QCD
to SCETI, the result of this analysis reads

Oi =
[

χ(0)(tn−)χ(0)
]

∗
(

CI
i (t)

[

ξhv

]

+ CII
i (t, s) ∗

[

ξ 6A⊥(sn+)hv

]

)

. (1)

Remarks: (a) The short-distance coefficient CI
i incorporates corrections to naive fac-

torization. The second term describes spectator-scattering with its own short-distance
coefficient CII

i . (b) The second term is a leading contribution despite the fact that
the corresponding operator is suppressed in dimensional and SCETI power counting.
This follows by extension of the power-counting analysis of [5]. (c) The meson M2

factorizes already below the scale mb [6], since SCETI does not contain interactions
between the χ(0) fields and the collinear-1 and soft fields. It follows that at leading
power in the heavy-quark expansion, the strong interaction phases originate from the
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short-distance coefficients CI,II
i at the hard scale. (d) The result above must be modi-

fied to account for a non-factorizing effect when the final state contains an η(′) meson.
This effect is explained in [7], but appears to have been missed in the SCET red-
erivation of the factorization theorem for mesons with flavour-singlet components [8].
Taking the hadronic matrix element of (1) gives

〈M1M2|Oi|B〉 = ΦM2
(u) ∗

(

T I(u) F BM1(0) + CII(τ, u) ∗ ΞBM1(τ, 0)
)

, (2)

where I have reintroduced the full QCD form factor F BM1(0) resulting in a slight
modification of the short-distance coefficients. ΞBM1(τ, 0) denotes a new, unknown,
non-local form factor, which depends on the convolution variable τ .

The different implementations of factorization can be distinguished broadly by
their treatment of the different factors in (2). In the PQCD approach [9] the form
factors F BM1(0) and ΞBM1(τ, 0) are assumed to be short-distance dominated, and
claimed to be calculable in a generalized factorization framework (k⊥-factorization).
All four quantities, T I, CII, F BM1(0), ΞBM1(τ, 0) have been calculated at leading order.
Recently, some next-to-leading order (NLO) corrections to T I have been included. In
the QCD factorization approach [3] it is assumed that the standard heavy-to-light
form factors receive a leading soft contribution, and are therefore not calculable.
However, ΞBM1(τ, 0) is dominated by perturbative hard-collinear interactions, and
factorizes further into light-cone distribution amplitudes (see below). In the BBNS
implementation of QCD factorization, F BM1(0) is a phenomenological input (usually
from QCD sum rules). The other three quantities, T I, CII, ΞBM1(τ, 0) have been cal-
culated at the next-to-leading order. In the BPRS implementation [6] the use of per-
turbation theory at the hard-collinear scale

√
mbΛ is avoided, and both form factors

are fit to hadronic B decay data. This approach is restricted to leading-order in the
short-distance coefficients, since only then does the unknown form factor ΞBM1(τ, 0)
enter the equations through a single moment. There is another difference between
BBNS and BPRS, who claim that (1) is not valid for diagrams with internal charm
quark loops. (This should be distinguished from [10], which speculates about large
power corrections from charm loops or annihilation.) I believe that the theoretical
arguments leading to this conclusion are wrong [11]. For phenomenology, the impor-
tant consequence from treating charm loop diagrams as non-perturbative is that the
penguin amplitudes must be determined from data, such that no CP asymmetry can
be predicted from theory alone. Since the tree amplitudes are also determined from
data (namely, through the two form factors; the phase of C/T is automatically zero
in a leading-order treatment), the BPRS approach has much more in common with
amplitude fits to data than with QCD/SCET calculations.

The QCD factorization argument is completed by noting that the non-local SCETI

form factor ΞBM1(τ, 0) factorizes into light-cone distribution amplitudes, when the
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hard-collinear scale
√

mbΛ is integrated out [5]. Inserting

ΞBM1(τ, 0) = J(τ ; ω, v) ∗ ΦB(ω) ∗ ΦM1
(v) (3)

into (2) results in the original QCD factorization formula with the additional insight
that the spectator-scattering kernel T II = H II ∗ J factorizes into a hard and hard-
collinear kernel. The development of SCET was crucial to identify the operators and
precise matching prescriptions that make the calculation of higher-order corrections
to spectator-scattering feasible.

3 Higher-order calculations

On the calculational side one of the main efforts over the past few years has been
the calculation of one-loop corrections to spectator-scattering, which formally repre-
sents a next-to-next-to-leading contribution in the QCD factorization approach. This
programme is now complete. The hard-collinear correction to J has been calculated
in [12–14]; the hard correction to H II in [15, 16] for the tree amplitudes and in [17]
for the QCD penguin and electroweak penguin amplitudes. (An earlier calculation of
the QCD penguin contribution [18] disagrees with [17].) The main results are sum-
marized as follows: (a) The convolution integrals are convergent, which establishes
factorization of spectator-scattering at the one-loop order. (b) Perturbation theory
works for spectator-scattering, including perturbation theory at the hard-collinear
scale. (c) The correction enhances the colour-suppressed tree amplitude, and reduces
the colour-allowed one. This improves the description of the tree-dominated decays
to pions and ρ mesons. (d) The correction to the colour-allowed QCD penguin am-
plitude is negligible. Thus there is no essential change in the predictions of branching
fractions and CP asymmetries of penguin-dominated decays.

The evaluation of the colour-suppressed tree amplitude gives [17]

a2(ππ) = 0.18 − [0.15 + 0.08i]NLO

+
[ rsp

0.485

] {

[0.12]LO + [0.05 + 0.05i]NLO + [0.07]tw3

}

. (4)

Here rsp = (9fM1
f̂B)/(mbF

BM1(0)λB) defines a combination of hadronic parame-
ters that normalizes the spectator-scattering effect. Eq. (4) shows the importance
of computing quantum corrections: the naive factorization value 0.18 is nearly can-
celed by the 1-loop vertex correction calculated in [3]. It now appears that the
colour-suppressed tree amplitude is generated by spectator-scattering. It is not ex-
cluded that rsp is a factor of two larger than 0.485, in which case a2 becomes rather
large. My interpretation of the pattern of the ππ, πρ and ρρ branching fractions is
that spectator-scattering is important [19]. On the other hand, the large direct CP
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asymmetry in Bd → π+π− cannot be explained by known radiative corrections, and
remains a problem.

Next-to-leading order corrections have recently been implemented in the PQCD
approach for the first time [20]. More precisely, the 1-loop kernel T I from the QCD
factorization approach is used as a short-distance coefficient for the subsequent tree-
level PQCD calculation. The numerical impact is again strongest on the colour-
suppressed tree amplitude, C. But while this correction (−[0.15 + 0.08i]NLO in (4))
results in a near cancellation of the naive factorization term in the QCD factorization
approach, it provides an enhancement of C by a factor of several in [20]. This resolves
the πK puzzle in the PQCD approach.

I am rather sceptical about the possibility to perform accurate calculations in the
PQCD approach. A complete NLO calculation in the PQCD approach requires a
calculation of all one-loop spectator-scattering diagrams (similar to [15–17]) rather
than the 1-loop BBNS kernels. The calculation of T I is done with on-shell external
lines, but when the vertex diagram appears as a subdiagram in a larger diagram
with hard-collinear exchanges, the external lines of the subdiagram can be far off-
shell. Hence T I is not the appropriate quantity to be used. The numerical differences
between (4) and [20] despite the same input T I can be traced to the choice of scales.
The one-loop correction to T I makes the result less sensitive to variations of the
renormalization scale in the Wilson coefficients, but only for scales larger than about
1.5 GeV, below which perturbation theory breaks down. Factorization shows that
the scale of the Wilson coefficients should be of order mb. However, in the PQCD
approach the scales mb and

√
mbΛ are not distinguished, and the Wilson coefficients

are evaluated at very low scales (to 500 MeV), where perturbation theory is not
reliable. An unphysical enhancement of the Wilson coefficients at small scales is also
the origin of the large penguin and annihilation amplitude in the PQCD approach. Yet
a variation of the renormalization scale is not included in theoretical error estimates.

4 Power-suppressed effects

Power corrections to the QCD penguin amplitudes are essential for a successful phe-
nomenology within the factorization framework. The most important Λ/mb effect is
the scalar QCD penguin amplitude rχa6. Fortunately, the bulk contribution to this
amplitude appears to be calculable, although its factorization properties are not yet
understood. This power correction is responsible for the differences between PP , PV
and V V final states and the η(′)K(∗) final states [7]. The calculated pattern is in very
good agreement with experimental data.

The second most important power correction is presumably weak annihilation. I
emphasize “presumably”, since there is no unambiguous empirical evidence of any
weak annihilation contribution in charmless decays, and only upper limits can be
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derived. The theoretical difficulty with power corrections is reflected in the different
treatments of annihilation. In PQCD it is calculable and large. In the BBNS im-
plementation of factorization it is represented by a phenomenological parameter [21],
not very large, but it makes the calculation of CP asymmetries uncertain. In the
BPRS implementation it is neglected together with all power corrections. This is
phenomenologically viable, since the charm penguin amplitude is fit to data anyway.
Some weak annihilation amplitudes have been calculated with light-cone QCD sum
rules [22]; the result is compatible with the BBNS parameterization.

It is not difficult to write down the power-suppressed operators in SCET [23]. The
problem is that the factorization formula involves convolutions, which usually turn out
to be divergent at the endpoints, making the result meaningless. The inadequacy of
SCET in addressing this well-known problem in hard-exclusive scattering was pointed
out in various forms in [5,24], but no solution was offered. In the recent paper [25] it is
proposed that endpoint divergences can be eliminated by a new type of factorization
(“zero-bin”). This would be a breakthrough; however, I do not see how “zero-bin”
factorization could possibly be correct, since it cuts off the endpoint contributions
without defining the appropriate non-perturbative objects that would represent the
endpoint region. Thus, the new factorization-scale dependence is not consistently
canceled.

To explain this I compare the treatment of a certain weak annihilation diagram
in “zero-bin” factorization [26] with the BBNS parameterization [19, 21]. In the first

method, the divergent integral αs

∫ 1

0
dxφM2

(x)/x2 is interpreted as

−φ′
M2

(1) · αs ln
mB

µ−

+ F, (5)

in the second as

−φ′
M2

(1)
(

1 + ̺AeiϕA

)

· αs ln
mB

Λ
+ F, (6)

where

F ≡ αs

∫ 1

0

dx
φM2

(x) + xφ′
M2

(1)

x2 (7)

is a finite, subtracted integral. In [26] µ− is taken to be of order mb, thus the first term
in (5) is of order αs and perturbative. The endpoint contribution is effectively set to
zero, but the dependence on the arbitrary factorization scale µ− is not canceled. A
candidate non-perturbative parameter for the endpoint contribution could be φ′

M2
(1),

but this object is not defined in SCET, so a field-theoretical definition of the method
is missing. The second expression (6) looks similar, but now there is a large endpoint
logarithm, and αs ln mB/Λ is of order 1. The endpoint contribution is considered
to be non-perturbative, and is parameterized by the complex quantity ̺AeiϕA. It
is again the absence of a field-theoretical definition of this quantity that makes the
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BBNS parameterization a phenomenological model. Expression (6) is clearly a more
conservative treatment of the problem than (5).

It is evident that in the absence of a field-theoretical definition of the zero-bin
subtraction method, the statement that “annihilation is real and calculable” is wishful
thinking (I share the wish.); it also contradicts the QCD sum rule calculation [22].
My strong criticism (prompted by strong claims) is not to mean that the problem of
endpoint factorization is not important. To the contrary, its solution is prerequisite
to further progress in SCET.

5 Phenomenology (omitted)

There is not enough space to discuss the factorization calculations of branching frac-
tions and CP asymmetries and the comparison with data. I focus on the calculation
of the CP-violating S parameters and the determination of γ in the following section.
A very brief summary of the other topics discussed in the talk reads:

• The global comparison of all B → PP, PV data with scenario S4 of [19] re-
mains impressively good, including CP asymmetries, but there are persistent
exceptions. The same is true for the PQCD [20,30] and BPRS [8,31] approaches.

• An enhancement of the electroweak penguin amplitude to explain the πK sys-
tem is no longer compelling. The difference between the CP asymmetries in
π0K± and π∓K± seems to require an enhancement of the colour-suppressed
tree amplitude, which cannot be explained by factorization.

• There exist interesting effects [27,28] in B → V V decays, which motivate further
polarization studies. See [29] for a comprehensive analysis of these decays.

6 Determination of γ from Sf

The time-dependent CP asymmetries Sf in tree-dominated ∆D = 1 decays are par-
ticularly suited [19, 21] to determine the CKM phase γ (or α; I assume that β is
determined experimentally) in the framework of QCD factorization, since hadronic
uncertainty enters only in the penguin correction; the dependence on strong phases
is reduced, because it arises only through cos δ; the sensitivity to γ is maximal near
γ ∼ 70◦.

Figure 1 shows that for f = (ππ, πρ, [ρρ]L) and measurements Sf = (−0.59 ±
0.09, 0.03 ± 0.09,−0.06 ± 0.18) (HFAG averages), one obtains (ignoring a second
solution that does not lead to consistent results) γ = (70+13

−10, 69 ± 7, 73 ± 8)◦. The
three determinations are in agreement with each other, resulting in the average γ =
(71 ± 5)◦. See [19, 29] for details.
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7 Conclusion

The subject of hadronic decays has been and still is a very fertile ground for developing
new theoretical concepts in heavy flavour physics. A lot has been learned about
hadronic dynamics. Moreover, γ is by now known rather well from charmless decays.
There should be some way to include this information in the CKM fits.
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Figure 1: CKM phase γ from Sf with f = (ππ, πρ, [ρρ]L).
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