
Proceedings of the

VIIIth International Workshop on

Heavy Quarks and Leptons

HQL06

October 2006

Deutsches Museum, Munich

Editors

S. Recksiegel, A. Hoang, S. Paul

Organized by the Physics Department of the Technical University of Munich
and the Max-Planck Institute for Physics, Munich



This document is part of the proceedings of

HQL06, the full proceedings are available from

http://hql06.physik.tu-muenchen.de



Theory of Semi-Leptonic B Decays:

Exclusive and Inclusive

Thomas Mannel

Theoretische Physik I

Fachbereich Physik

Universität Siegen

57068 Siegen, Germany

1 Introduction

Semi-leptonic decays of B mesons play an important role in flavour physics. On one
hand they are relatively simple as far as the effects of strong interactions are concerned
(at least compared to non-leptonic decays), on the other hand they are an important
ingredient for the determination of the unitarity triangle. The radius of the so-called
“Unitarity Clock”, the circle around the origin in the ρ-η plane, is determined by the
ratio |Vub/Vcb| which is most cleanly determined from semi-leptonic decays.

The theoretical methods to evaluate the hadronic matrix elements have developed
tremendously over the past fifteen years [1]. With the advent of the 1/mb expansion
a systematic, QCD based theory could be set up which resulted in a drastic reduction
of model dependence in many theoretical calculations.

The 1/mb expansion can be set up for both exclusive and inclusive decays. Any
observable of a B meson decay can in general be written as

R = R0 +

(
ΛQCD

mb

)
R1 +

(
ΛQCD

mb

)2

R2 +

(
ΛQCD

mb

)3

R3 + · · · (1)

where the coeffcients are expressed in terms of a set of non-perturbative matrix el-
ements with computable prefactors. The strength of the method is that the leading
term may in many cases be fixed by heavy quark symmetries and hence hadronic
uncertainties enter the stage only at the level of corrections.

In the following I will give a short summary on the status of these methods for
inclusive as well as for exclusive decays. In the next section I shall consider exclusive
semi-leptonic decays for both heavy-to-heavy and heavy-to-light decays and discuss
the impact on the CKM matrix elements Vcb and Vub. In section 3 I will consider
inclusive decays and discuss the methods to extract the necessary infomation for the
1/mb expansion. Finally I give a few concluding remarks.
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2 Exclusive Decays

The main ingredient for a description of exclusive decays are the form factors for the
decays. In general, there are two independent form factors for a 0− → 0− transition

〈M(p′)|qγµ(1 − γ5)b|B(p)〉 = f+(q2)(p+ p′)µ + f−(q2)qµ , q = p− p′ (2)

and another four independent form factors for the 0− → 1− transition.
We will concentrate here on the decay modes B → Dℓνℓ and B → D∗ℓνℓ for the

heavy-to-heavy (b→ c) case and on B → πℓνℓ for the heavy-to-light (b→ u) case.

2.1 B → Dℓνℓ and B → D
∗
ℓνℓ

In the heavy mass limit the relevant kinematic variable for a heavy meson is its four-
velocity vµ = P µ

H/MH . For a B meson the heavy b quark roughly moves with the
same velocity, i.e. its momentum p is

pµ = mbv
µ + kµ with vµ =

P µ
H

MH
(3)

The residual momentum k of the b quark is assumed to be small compared to mb and
hence an expansion in powers of k/mb is possible.

Using the four velocities of the initial and final state hadrons we may write the
differential rates as (ω = v · v′)

dΓ

dω
(B → D∗ℓνℓ) =

G2
F

48π3
|Vcb|

2m3
D∗(ω2 − 1)1/2P (ω)(F(ω))2 (4)

dΓ

dω
(B → Dℓνℓ) =

G2
F

48π3
|Vcb|

2(mB +mD)2m3
D(ω2 − 1)3/2(G(ω))2 (5)

where we have introduced the form factors F and G.
It is well known that heavy quark symmetries allow normalization statements

for the form factors in heavy-to-heavy transitions at the non-recoil point v = v′ or
ω = v · v′ = 1 [2–4]. In addition, effective-field-theory methods allow us to calculate
corrections to these normalization statements. One finds

F(ω) = ηQEDηA

[
1 + δ1/µ2 + · · ·

]
+ (1 − ω)ρ2 + O((1 − ω)2) (6)

G(1) = ηQEDηV

[
1 + O

(
mB −mD

mB +mD

)]
(7)

where µ = mcmb/(mb + mc) is the parameter of Heavy-Quark-Symmetry breaking,
which governs the leading non-perturbative corrections δ1/µ2 , ρ is a slope parameter
and ηA and ηV are the perturbative corrections to the Axial-Vector and the Vector
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current due to QCD effects and ηQED are the QED corrections. The radiative cor-
rections are known at the two-loop level [5], while the non-perturbative correction is
estimated on the basis of a sum rule [6]; the currently best values are

ηA = 0.960 ± 0.007 , ηV = 1.022 ± 0.004 ,

δ1/µ2 = −(8 ± 4)% , ηQED = 1.007 (8)

Thus from heavy-quark symmetries one can obtain the form-factor normalization
F(1) with an uncertainty of about 4%, while G(1) parametrically has a substantially
larger uncertainty.

However, all the calculations based on the heavy quark limit might become ob-
solete, since unquenched lattice calculations become available which do not refer to
the heavy mass limit [7]. These calculations compute the deviation of the two form
factor from unity and the current results are

F(1) = 0.91+0.03
−0.04 G(1) = 1.074 ± 0.018 ± 0.016 (9)

I is worth noticing that the uncertainty in G(1) is smaller than the one in F(1), which
is currently at the same level as the the one obtained from heavy-quark considerations.

The results for the form factors may be used to obtain value for Vcb by extrapo-
lating the data to the non-recoil point v = v′. Fig. 1 shows he current situation for
this extrapolation.
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Figure 1: Measurements of |Vcb|F(1) (left) and |Vcb|G(1) versus the from factor slope.
Plots are taken from [8].

From this input one extracts a value for Vcb from exclusive decays:

Vcb,excl = (39.4 ± 0.87+1.56
−1.24) × 10−3 (10)
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2.2 B → πℓνℓ

The rate for B → πℓνℓ for vanishing lepton mass is given in terms of only one form
factor

dΓ

dq2
=
G2

FVub

24π3
|~pπ|

3|f+(q2)|2 (11)

Heavy Quark Symmetries cannot be used as efficiently as in the heavy-to-heavy
case and only relative normalization statements are possible. In this case it is more
convenient to make us of other methods.

Figure 2: Feynman diagrams for the sum rule evaluation of the B → π form factor.

One possibility is to use QCD (light cone) sum rules [9, 10] which use dispersion
relations and the light-cone expansion for the correlator

Fλ(p, q) = i

∫
d4x eipx〈π+(q)|T{uγλb(x) mbbiγ5d(0)}|0〉 (12)

which is evaluated in the deep euclidean region using the Feynman diagrams shown
in fig. 2. The imaginary part corresponding to the cut shown here is related to a sum
of hadronic states which contains also the desired state.

Applying this to the B → π form factor one obtains an estomate for fBf+(q2) in
the region of small q2. The method has quite a few sources of uncertainties, which
are from Higher Twists (≥ 4), from the b quark mass and renormalization scale,
from the values of the condensates from the sum rule parameters (Threshold and
Borel parameters) and finally from the Pion Distribution amplitude. Estimating the
resulting uncertainties by varying the parameters we find [9, 10]

f+(0) = 0.27 ×
[
1 ± (5%)tw>4 ± (3%)mb,µ ± (3%)〈qq〉 ± (3%)sB

0
,M ± (8%)aπ

2,4

]
(13)

which adds up to an uncertainty of about 15%.
Complementary information may be obtained from the lattice, since lattice sim-

ulations are restricted to large values of q2 [11, 12]. Also for heavy-to-light decays
first unquenched results become available. In fig. 3 the latice data points are shown
together with a fit using a pole model [13].
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Figure 3: Lattice data for the two form factors involved in B → π transitions. The
solid line is a fit to the data using a pole model [13].

Lattice and QCD sum rules turn out to be nicely consistent, giving us some
confidence that the form factor in B → π is under reasonable control. Using the
lattice data one obtains for the rate above q2 = 16 GeV2

|Vub|
2 × (1.31 ± 0.33) ps−1 HPQCD (14)

|Vub|
2 × (1.80 ± 0.48) ps−1 Fermilab / MILC (15)

Gathering the information from the various methods we yield a consistent picture
for the value for Vub from exclusive decays. We quote the value from QCD sum rules
taken from [10]

|Vub| = (3.41 ± 0.12+0.56
−0.38) × 10−3 (16)

where the first uncertainty is experimental and the second one is theoretical.

3 Inclusive Decays

The 1/mb expansion for inclusive decays [14–16] is set up in a similar way as one
discusses deep inelastic scattering. The total rate is proportional to

Γ ∝
∑

X

(2π)4δ4(PB − PX)|〈X|Heff |B(v)〉|2 =

∫
d4x 〈B(v)|Heff(x)H

†
eff(0)|B(v)〉

= 2 Im

∫
d4x 〈B(v)|T{Heff(x)H

†
eff (0)}|B(v)〉

= 2 Im

∫
d4x e−imbv·x〈B(v)|T{H̃eff(x)H̃

†
eff (0)}|B(v)〉 (17)
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where in the last step we have replaced the b quark field operator by b → b̃ =
exp(−imbv · v)b, which corresponds to the replacement pb = mbv + k.

The next step is to perform an operator product expansion (OPE), which is in
the case at hand not in the euclidean region, but rather in the minkowskian. One
obtains for the operator product

∫
d4xeimbvxT{H̃eff(x)H̃

†
eff (0)} =

∞∑

n=0

(
1

2mQ

)n

Cn+3(µ)On+3 (18)

where Oj represents a set of local operators of dimension j and Cj are (perturbatively
computable) Wilson coefficients, encoding the short distance contributions.

Taking the forward matrix element of (18) yields an expansion for the total rate
of the form

Γ = Γ0 +
1

mQ
Γ1 +

1

m2
Q

Γ2 +
1

m3
Q

Γ3 + · · · (19)

where the non-perturbative contributions are encoded in the forward matrix elements
of the local operators. The general structure of such an expansion is

• Γ0 is the decay of a free quark (“Parton Model”)

• Γ1 vanishes due to “Luke’s theorem” [17]

• Γ2 is expressed in terms of two parameters

2MHµ
2
π = −〈H(v)|Qv(iD)2Qv|H(v)〉 (20)

2MHµ
2
G = 〈H(v)|Qv(−iσµν)(iD

µ)(iDν)Qv|H(v)〉 (21)

where µπ is the kinetic energy parameter and µG is the chromomagnetic mo-
ment.

• Γ3 introduces two more parameters [18]

2MHρ
3
D = −〈H(v)|Qv(iDµ)(ivD)(iDµ)Qv|H(v)〉 (22)

2MHρ
3
LS = 〈H(v)|Qv(−iσµν)(iD

µ)(ivD)(iDν)Qv|H(v)〉 (23)

where ρD is the so-called Darwin Term and ρLS is the spin-orbit term

• Recently the 1/m4
b contribution has been calculated at tree level for semileptonic

decays [19]. This introduces five more parameters which have a simple intuitive
interpretation:

〈 ~E2〉 : Expectation value of the Chromoelectric Field squared

〈 ~B2〉 : Expectation value of the Chromomagnetic Field squared

〈(~p2)2〉 : Fourth power of the residual b quark momentum

〈(~p2)(~σ · ~B)〉 : Mixed Chromomagnetic Moment and res. Momentum sqrd.

〈(~p · ~B)(~σ · ~p)〉 : Mixed Chromomagnetic field and res. helicity
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3.1 B → Xcℓνℓ

The total rate becomes schematically [20]

Γ = |Vcb|
2Γ̂0m

5
b(µ)(1 + Aew)Apert(r, µ) (24)[

z0(r) + z2(r)

(
µ2

π

m2
b

,
µ2

G

m2
b

)
+ z3(r)

(
ρ3

D

m2
b

,
ρ3

LS

m2
b

)
+ ...

]

where Aew and Apert are the electroweak and the perturbative QCD corrections, r =
m2

c/m
2
b and zi(r) are the phase space correction factors appearing in the different

orders in 1/mb.
The state-of-the-art for this calculation includes the 1/mb Expansion at tree level

up to 1/m4
b , the complete O(αs) corrections for the partonic rate (1/m0

b) and the
partial O(α2

s), while the O(αs) for 1/m2
b terms under consideration.

The partonic rate has a significant scheme dependence, related to the strong de-
pendence on the heavy quark mass. It is well known that the calculation in the
pole mass scheme yields sizable QCD radiative corrections. However, switching to
a scheme with a suitably chosen short-distance mass reduces the size of the QCD
radiative corrections by absorbing them into the mass.

There are two schemes which are commonly used. The kinetic scheme [6] defines
the kinetic mass mkin(µ) from a sum rule for the kinetic energy of a heavy quark,
while the 1S scheme uses a mass definition derived from a perturbative calculation
of the Υ(1S) mass [21]. Both schemes yield a comparable precision; for simplicity I
will stick to the kinetic scheme in this talk.

The extraction of Vcb from (24) requires (aside from the quark masses mb and
mc) the knowledge of the Heavy Quark Expansion (HQE) parameters µπ, µG, ρD and
ρLS. These parameters are obtained from the analysis of the leptonic energy and the
hardonic invariant mass. It has been shown that the moments of these spectra can
be computed reliably in HQE and hence one considers

〈Mn
X〉 =

1

Γ

∫
dMX M

n
X

∫

Ecut

dEℓ
d2Γ

dMx dEℓ
(25)

〈En
ℓ 〉 =

1

Γ

∫
dMX

∫

Ecut

dEℓE
n
ℓ

d2Γ

dMx dEℓ

(26)

Aside from extracting the HQE parameters in this way one may in addition study
the dependence of the various moments on the cut energy Ecut which is the minimal
lepton energy included in the integration. The fits show a very good agreement with
the theoretical expectation [22], giving us some confidence that we do understand
inclusive semi-leptonic decays at a precision level. In table 1 we show the fit results
for the heavy quark parameters.

Using this method one can extract the value of Vcb to be

Vcb = 41.96 ± 0.23exp ± 0.35HQE ± 0.59Γsl
) × 10−3 (27)
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Quantity Value exp HQE

mb (GeV) 4.590 ± 0.025 ± 0.030
mc (GeV) 1.142 ± 0.037 ± 0.045
µ2

π (GeV)2 0.401 ± 0.019 ± 0.035
µ2

G (GeV)2 0.297 ± 0.024 ± 0.046
ρ3

D (GeV)3 0.174 ± 0.009 ± 0.022
ρ3

LS (GeV)2 -0.183 ± 0.054 ± 0.071

Table 1: Values of the HQE parameters [22]. The column “exp” contains the experi-
mental uncertainty, while “HQE” contains the remaining uncertainy from the heavy
quark expansion.

where the last uncertainty is from the experimental knowledge of the total semilep-
tonic rate. Note that the relative theoretical uncertainty in Vcb is currently at the level
of 2% and can possibly further reduced by including the newly calculated contribution
of order 1/m4

b

3.2 B → Xuℓνℓ

The extaction of Vub has to proceed along different lines due to the problem that
in most of the phase space the b → u transitions are completely obscured by the
much stronger b → c decays. Thus the analysis for Vub has to make use of small
corners of phase space in which the OPE described in the last section breaks down.
For example, the lepton energy spectrum (y = 2Eℓ/mb) close to the endpoint region
y → 1 becomes

dΓ

dy

y→1
=

G2
F |V

2
ub|m

5
b

96π3

[
Θ(1 − y) +

µ2
π − µ2

G

6m2
b

δ(1 − y) +
µ2

π

6m2
b

δ′(1 − y) + · · ·

]
(28)

where the singular terms indicate a breakdown of the OPE close to y = 1, which
yields in this case an expansion in terms of 1/[mb(1 − y)]

It has been shown some time ago that thee singular terms can be resummed into
a non-perturbative function, the so called shape function which is formally defined
as [23–25]

2MBf(ω) = 〈B(v)|bvδ(ω + i(n ·D))|B(v)〉 (29)

where the second and the third moments of this function may be related to the HQE
parameters µπ and ρD

f(ω) = δ(ω) +
µ2

π

6m2
b

δ′′(ω) −
ρ3

D

18m3
b

δ′′′(ω) + · · · (30)
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In terms of the shape function one may write the resummed rate as

dΓ

dy
=
G2

F |V
2
ub|m

5
b

96π3

∫
dωΘ(mb(1 − y) − ω)f(ω) (31)

and moment expansion of this expression yields (28).

In order to obtain a precise method for the extraction of Vub one needs aside from
some information on the shape function (this could be taken from the rare decay
B → Xsγ, which is governed by the same shape function) also to take into account
the radiative and the 1/mb corrections. In order to do this one has to use “Soft
Collinear Effective Theory” (SCET), since in the endpoint region the light degrees of
freedom become energetic [26, 27].

It has been shown the within SCET the inclusive rates in the endpoint can be
factorized according to [28]

dΓ = H ⊗ J ⊗ S (32)

where the symbol ⊗ means a convolution. The function H contains the hard con-
tribution related to scales of order mb, J is the “jet function” containing the scales√

ΛQCDmb and S is the shape function with the soft pieces with scales ΛQCD. Note

that both mb and
√

ΛQCDmb are perturbative scales and hence H and J are computed
in perturbation theory.

Without going into further details we only quote the state-of-the-art of this kind of
calculation. The next to leading terms in the 1/mb expansion have been investigated
in [29,30] and the QCD radiative corrections have been considered in [31]. Finally, in
order to obtain quantitative predictions one needs a model for the shape functions.
There are two approaches commonly used. One makes use of a model which is chosen
such that the first few moments coincide with what is known from the local OPE [31]
(BLNP). The second method [32] is based on the so called “dressed gluon exponenti-
ation” (DGE) which is a QCD based model for the shape function. The results which
are obtained from these two approaches are consistent [8]

Vub = (4.49 ± 0.19exp ± 0.27theo) × 10−3 BLNP

Vub = (4.46 ± 0.20exp ± 0.20theo) × 10−3 DGE

Aside from the shape function dependent methods there are also shape function
insensitive methods [33]. However, although these methods have a smaller theoretical
uncertainty, they are using a smaller part of the phase space and hence the experi-
mental uncertainties are larger. From this method one obtains [8]

Vub = (5.02 ± 0.26exp ± 0.37theo) × 10−3 (33)
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4 Conclusion

From all the checks that have been made it is fair to conclude that the theory of semi-
leptonic decays is in a mature state. Current methods allow us to extract Vcb with
an overall relative accuracy at the level of 2%. This is a remarkble progress in view
of the fact that the relative uncertainty of the Cabbibo angle is also not significantly
better.

For the calculations of the inclusive rates for the determination of Vcb only small
improvements are possible, e.g. by a calculation of the contributions of order αs/m

2
b

and by the inclusion of the newly calculated 1/m4
b terms. However, the progress in the

lattice calculations of the exclusive form factors is very promising and the precision of
these calculations is already in competition with the heavy quark expansion method.
In the near future one may expect that exclusive methods using lattice data will
become more precise than the heavy quark expansion method

The determination of Vub has currently a relative theoretical uncertainty of about
8%, and possible improvements of the inclusive methods are still limited either by
statistics or by model dependences for e.g. the subleading shape functions. Similar to
the exclusive methods are catching up due to more precise and more reliable lattice
data. On this basis a future improvement to a level of 5% relative uncertainty (or
maybe even better) seems to be possible.

There seems to be a systematic tendency that the exclusive values of both Vcb

and Vub come out to be lower that the inclusive values, where this effect is more
pronounced for the case of Vub. It is interesting to note that the somewhat lower
value of Vub is more compatible with the time dependent CP asymmetry measured in
B → J/ψKs. However, all these effects are well within the uncertainties, which may
have been estimated a bit too optimistic, since - in particular a theoretical uncertainty
- is hard to estimate.
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