Status Report on the Geodetic

 and Alignment Results for the NuMLIMINOS Project

- Part of the neutrino research program at Fermilab is the search for non-zero neutrino mass
- Looks for neutrino oscillations ($v_{\mu} \rightarrow v_{\tau}$) or $\left(v_{\mu} \rightarrow v_{e}\right)$
- NuMI (Neutrinos at the Main Injector) has built a new particle beamline capable of directing a pure beam of muon neutrinos
- MINOS (Main Injector Neutrino Oscillation Search) experiment uses NuMI beam to search with significantly greater sensitivity for neutrino oscillations utilizing two detectors:
- "near" detector - located close to the neutrino source (1 km away from the target)
- "far" detector - 735 km away, in a deep underground mine in northern Minnesota, 710 m below the surface

Fermilab

NuMI Tunnels and Halls

NuMI Tunnel Project

 Fermilab

NuMI beamline

NuMI Beamline

Alignment Tolerances

- primary proton pointed $\pm 12 \mathrm{~m}$ at the far detector (± 3.4 arc second)
- neutrino beam centered $\pm 75 \mathrm{~m}$ at the far detector (± 21 arc second)

Beam position at target	$\pm 0.45 \mathrm{~mm}$
Beam angle at target	$\pm 0.7 \mathrm{mrad}$
Target position - each end	$\pm 0.5 \mathrm{~mm}$
Horn 1 position - each end	$\pm 0.5 \mathrm{~mm}$
Horn 2 position - each end	$\pm 0.5 \mathrm{~mm}$
Decay pipe position	$\pm 20 \mathrm{~mm}$
Downstream Hadron monitor	$\pm 25 \mathrm{~mm}$
Muon Monitors	$\pm 25 \mathrm{~mm}$
Near Detector	$\pm 25 \mathrm{~mm}$
Far Detector	$\pm \mathbf{1 2 ~ m}$

- NuMI is mainly sensitive to final primary beam trajectory
- beamline components, target, and horn alignment => relative positions to $\pm 0.35 \mathrm{~mm}(1 \sigma)$

Fermilab

NuMI: Neutrino Beam

Focusing Horns misalignments have

Determination of the Global Positions

- geodetic orientation parameters of the beam => absolute \& relative positions of target (Fermilab) and far detector (Soudan)
- GPS tied to national CORS network
- solution in ITRF96 reference system => transformed in national NAD 83 system
- NGS provided independent solution (excellent agreement)
- vector known to better than $1 \mathbf{c m}$ horizontally and vertically
- inertial survey through 713 m shaft tied the the $27^{\text {th }}$ level of the mine to surface geodetic control

GEOID CONSIDERATION
 Models Comparison (Local Geoid Model and NGS Geoid93)

Primary Geodetic Network at Fermilab

- existing Fermilab control network (accuracy < $2 \mathbf{~ m m} @ 95 \%$ confidence level)
- NAD 83 horizontal geodetic datum (GRS-80 reference ellipsoid)
- NAVD 88 vertical datum
- Geoid93 NGS model
- included 3 monuments tied to CORS
- added 6 new geodetic monuments (densification around access shafts)
- 410 GPS, terrestrial, and astronomic observations
- error ellipses in millimeter range (@ 95\% confidence level)
precision levelling: $\pm 0.58 \mathrm{~mm} / \mathrm{km}$ double-run Fermilab

Primary Geodetic Network

Results

Error ellipses @ 95\% confidence level (bar scale tick = 1 mm)

Histogram of standardized residuals (bar scale tick = 1σ) Fermilab

Underground Control Networks

- Network simulations => 7 locations for transferring coordinates from the surface (3 vertical sight risers, 2 tunnel Access Shafts, 2 Exhaust Air Vent pipes)

First phase: to support components installation in the Target Hall and the construction and alignment of the Near Detector in the MINOS Hall

- Measured with the Laser Tracker and processed as trilateration
- Additional measurements to study/control network behaviour: Mekometer distances, precision angles, and gyro-azimuths
- Network results: errors below $\pm 0.35 \mathrm{~mm}$ at 95% confidence level

Initial Target Hall Network
Histogram of standardized residuals

MINOS detector Hall Network
Histogram of standardized residuals

Underground Network for the Primary Beam

- Second Phase: to support the alignment of Primary Beam components and the Target and focusing Horns
- Network: from MI-60 to the downstream end of the Target Hall
- Least-Squares Adjustment: constraints at MI-60, SR-1, SR-2, and SR-3
- Network type: Laser Tracker processed as trilateration
- Additional measurements to study and control network behaviour and for confirmation
- 23,000 Observations => Laser Tracker ($\sigma=\mathbf{0 . 0 5 0 - 0 . 1 5 ~ m m}$), Mekometer Distances ($\sigma=0.2 \mathrm{~mm}+/-0.2 \mathrm{ppm}$), Precision Angles ($\sigma=0.3^{\prime \prime}$), Optical offsets ($\sigma=0.2-0.5 \mathrm{~mm}$), Gyro Azimuths ($\sigma=3^{\prime \prime}$)
- Azimuth SR2-SR3 confirmed by first order Astronomical Azimuth: agreement at 0.74 arc second ($\sigma= \pm 0.21$ arc second)

Alignment results:

> Primary beam magnets and instrumentation aligned to $\pm 0.25 \mathrm{~mm}$
$>$ Target station components aligned to $\pm 0.5 \mathrm{~mm}$

劳 Fermilab

百

Underground Network for the Primary Beam

Fermilab

 Results: Histogram of Standardized Residuals

- Errors Ellipses below $\pm 0.45 \mathrm{~mm}$ at 95% confidence level
- Error budget network requirements $\pm 0.50 \mathrm{~mm}$ at 95% confidence level

- Errors Ellipses below $\pm 0.46 \mathrm{~mm}$ at 95% confidence level
- Error budget network requirements $\pm 0.50 \mathrm{~mm}$ at 95% confidence level

NuMI Beam Commissioning

Commissioning the Primary Proton Beam

- NuMI starts December 3, 2004 :
- target OUT of the beam, horns turned OFF
- small number of low intensity pulses carefully planned
- beam extracted out of Main Injector on the $1^{\text {st }}$ pulse, per design parameters - no tuning required
- beam centered on the Hadron Absorber, 725 m away from target, in 10 pulses - very minimal tuning
- beam points in the right direction to $<\mathbf{2}$ arc second

$10^{\text {th }}$ pulse: SEMs and Hadron Monitor readings

Beam Extraction in 10 Pulses

NuMI Hadron Monitor 2-D Display (log Z) Vertical position (inches)

Pulse height (pC)

NuMI Hadron Monitor Y-position

NuMI Beam Commissioning Commissioning of the Neutrino Beam

- MINOS starts January 21, 2005:'
- target at Z=-1m (Medium Energy Beam)
- horns turned ON
- on the $4^{\text {th }}$ horn pulse - first neutrino in the Near Detector
- after fine tuning the proton line, on February 18, 2005, NuMI turn to high intensity beam, operating on 6 multi-batch mode
- March 07, 2005 - first confirmed neutrino in the Far Detector

Fermilab

Fermilab

First Neutrino in the Far Detector

NuMI Beam Commissioning

Beam-Based Alignment of Target and Horns

- The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments
- Primary beam magnets and instrumentation aligned to $\pm 0.25 \mathrm{~mm}$
- Target station components aligned to $\pm 0.5 \mathrm{~mm}$.

DEVICE	Horizontal dX (mm)	Vertical dY (mm)
Target	-0.122	-0.151
Horn 1	-0.285	0.303
Horn 2	-0.344	-0.650

- Proton beam used to locate the relative positions and angles of these components
- Procedure:
$>$ Scan proton beam ($\sigma=1 \mathrm{~mm}$) across known features of beamline components (Target \& Baffle and Horns cross-hairs)
> Use instrumentation (BPMs and Profile Monitors) to correlate with measured proton beam position

NuMI Beam and Monitoring Instrumentation

> Graphite fin core segments:
($20 \mathrm{~mm} \times 15 \mathrm{~mm} \times 6.4 \mathrm{~mm}$) $\times 47$
$>$ Target length $=95.4 \mathrm{~cm}$
$>$ Baffle length $=150 \mathrm{~cm}$

NuMI Target

劳

Fermilab

NuMI Target

View from inside the chase - for Low Energy (LE) beam configuration Target slides into Horn 1 without touching

- Cross-hairs intercept primary proton beam:
- One on the downstream end of Horn 1
- One on each end of Horn 2

Fermilab

Horns Cross-hairs

- Beam narrow horizontally, wide vertically

节 Fermilab

NuMI Horn Inside the Chase

Target \& Baffle Horizontal Positions

- The peaks are the gaps between baffle and target
- Different peak heights => offsets target/baffle or a common angle

Fermilab

Target \& Baffle Vertical Positions

-

- Scans at LE (0 cm), ME (100 cm), and HE (250 cm)
- Target parallel with primary beam better than 0.5 mm across 2.5m of travel

Horn 1 Horizontal Position

Measured: integrated intensity

Fermilab

Horn 2 Horizontal Positions
 Virgil Bocean

Measured: integrated intensity

Summary of Target/Horns Sans on BPM Measurements

Beam Not Steered $(x, y)=(0,0) \mathrm{mm}$

DEVICE	Offset (mm)	Effect \%	Angle (mrad)	$\begin{gathered} \text { Effect } \\ \% \end{gathered}$
Baffle	-1.21	2.5	-0.14	<0.1
Target	-1.41	2.5	-0.14	<0.1
Horn 1	-1.24	1.1	-0.18	0.3
Horn 2	-1.82	1.2	-0.18	<0.1
DEVICE	Offset (mm)	Effect \%	Angle (mrad)	Effect \%
Baffle	1.12	2.2	-0.7	<0.1
Target	0.13	<0.1	-0.7	0.26
Horn 1	0.81	1.4	0.26	0.43
Horn 2	0.08	<0.1	-0.43	<0.1

- components are consistently to the left, and usually down (exception is that baffle is about $1 \mathbf{m m}$ high w.r.t. target)
- the "effects" represent the Far-to-Near ratio of neutrino fluxes as a result of the measured offsets - tolerance required is < 2 \%

Summary of Target/Horns Scans

 on BPM Measurements
Beam Steered at $(x, y)=(-1.2,+1.0) \mathrm{mm}$

DEVICE	Offset (mm)	Effect \%	Angle (mrad)	Effect \%
Baffle	0.01	<0.1	-0.14	<0.1
Target	-0.21	0.37	-0.14	0.1
Horn 1	0.03	<0.1	-0.18	0.32
Horn 2	-0.62	0.23	-0.18	<0.1
DEVICE	Offset (mm)	Effect \%	Angle (mrad)	Effect \%
Baffle	0.12	<0.1	-0.7	<0.1
Target	-0.87	<0.1	-0.7	0.26
Horn 1	-0.19	<0.1	0.26	0.35
Horn 2	-0.92	0.42	-0.43	<0.1

- beam is pointed on: Target center horizontally and Baffle center vertically => established as beam RUN PARAMETERS
- all effects Far-to-Near ratio of neutrino fluxes as a result of measured offsets from beam scans are well below the 2% tolerance required

Pre-Target and Target Hall Deformation Analysis

- The beam-based alignment of the Target Hall components indicated that the Target Hall moved with loading of 6400 tons of steel/concrete
- A deformation survey campaign was performed in April 2005 covering the Pre-Target tunnel and Target Hall
- Three scenarios considered and analyzed:

1. Target Hall empty (un-loaded)
2. Target and Horns modules loaded into the chase and Rblocks unloaded (partial load)
3. Target and Horns modules loaded into the chase and Rblocks loaded (full load)

- Methodology used: local Laser Tracker network supplemented by precision leveling

Fermilab

Fermilab

Target Hall During Target and Horns Alignment

Fermilab

Target Hall During Commissioning and Experiment Run

Horizontal Stability

Results

- The horizontal stability analysis results showed:
> no deformations in the Target Hall (walls or aisles points) until loading of the R-blocks (February 2005)
> the trend analysis showed no movement tendency on the Target Hall wall points across all three scenarios
> deformations up to 0.9 mm due to the load on both aisles after the installation of the R-blocks (February 2005) => both E and W Target chase ledges/aisles moved inwards (towards the beam)
> plastic deformation $=>$ very little (0.2 mm) or no rebound when the R-blocks where removed
- The Pre Target tunnel: no horizontal (or vertical) deformations

R-blocks loaded (as during run)

Target Hall Vertical Deformation R-blocks loaded (as during run)

West Aisle $\approx=0.7 \mathrm{~mm}$
 East Aisle $\boldsymbol{\approx} \mathbf{- 0 . 4} \mathbf{~ m m}$

 Fermilab

Support/Capture Fixtures for Target and Horns

Components are captureg cifl cups on the Fast Efta orand sit freely on plates on the West side; bewato 3 cofleformation thermond wes ward

Fermilab

Estimation on Effect of

- Horizontal beam on Target and Horns:
> Aisles (horizontal) deformation due to load $=\mathbf{- 0 . 9} \mathbf{~ m m}$
$>$ Displacement due to thermal expansion $\left(\Delta T=4^{\circ} \mathrm{C}\right)=-0.1 \mathrm{~mm}$
> Target misalignment $=\mathbf{0} \mathbf{0 . 1} \mathbf{~ m m}$
$>$ Total Horizontal estimated displacement $=\mathbf{- 1 . 1} \mathbf{~ m m}$
- Vertical beam on Target and Horns:
> Aisles (vertical) deformation due to load $=\mathbf{- 0 . 5} \mathbf{~ m m}$
$>$ Displacement due to thermal expansion (DT $=4^{\circ} \mathrm{C}$) $=-0.1 \mathrm{~mm}$
> Target misalignment $=\mathbf{- 0 . 1} \mathbf{~ m m}$
> Total Vertical estimated displacement $=\mathbf{- 0 . 7} \mathbf{~ m m}$ (the baffle was found 2 mm higher than the target at referencing)
- The deformation analysis confirms the beam-based alignment results

Fermilab

| June 24 ,2005 Beam Profile at MTGT

Fermilab

CONCLUSIONS

- NuMI/MINOS commissioning and transition to Operations (May 12, 2005) successfully concluded, with excellent performance at each step
- NuMI/MINOS delivered to experimenters and running for physics
$>$ I would like to extend our sincere thanks to all the many people and organizations who contributed to the realization and success of the NuMI/MINOS project.

