Survey and Alignment at Construction of SCSS Prototype Accelerator

Introduction

SCSS (SPring-8 Compact SASE Source) prototype accelerator was constructed at SPring-8 site The erection of its beam line tunnel was launched in February 2005. In October 2005, the installation of accelerator components was completed in two months. The total length of this accelerator is $\mathbf{6 0 ~ m}$ and its positioning tolerance required for each accelerator component is 0.3 mm . Considering such conditions, ordinary alignment procedure by using naked eye with alignment telescopes was adopted. We report survey and alignment at the construction of this accelerator.

A) JASRI/SPring-8, Sayo, Hyogo 679-5198, Japan
B) RIKEN/SPring-8, Sayo, Hyogo 679-5148, Japan

X axis:Lateral Y axis: Height Z axis: Beam direction from E-gun

June /E SASE light with 49 nm wavelength was observed

Surveying Instruments
Total station : Nikon GF-1, NF000-9 Tilting level:Leica N3 Automatic Level:Topcon AT-M3 Automatic nadir plumet:Leica WILD NL

1. Basic Policy of alignment

We adopted an ordinary method using naked eyes with alignment telescopes, which were aligned on two base lines. One is +700 mm height offset, and the another is +700 mm lateral offset. And alignment scales were also used.
Most of components were mounted on stone tables or cordierite support stands. All components were designed to avoid above sight lines.
BPMs in undulator section were re-aligned by different method using in-line He-Ne laser and airly disk.

Alignment telescope (Taylor Hobson Ltd.)

Alignment scale (BRUNSON Co.)

Total length of accelerator : 60 m Height of electron beam : $\mathbf{8 0 0} \mathrm{mm}$ Tolerance of alignment : $\pm 0.3 \mathrm{~mm}$

2. Bench mark for alignment

Alignment base lines (from electron beam line) $\mathbf{+ 7 0 0} \mathrm{mm}$ height offset ($\mathbf{Y}=\mathbf{1 5 0 0}, \mathrm{X} \leftrightharpoons \mathbf{0}$)
+700 mm lateral offset $(\mathbf{Y}=0, X=700)$
Cross hair targets described above lines were placed at both ends and mid point of accelerator. Alignment telescopes were placed at both ends and aligned with these targets.

Z position (beam direction) was marked on the floor using a total station and automatic nadir plumets.

0. Crinding of concrete floor

We grinded the concrete floor to make a very flat floor (roughness $<\mathbf{2 0} \boldsymbol{\mu m}$) using a grinding machine. The special machine equipped with a rotating diamond wheel, mounted on XYZ translator controlled by PLC.

For using air-pad system

For the tight connection between the girder and the concrete floor

Initial P-V value of concrete floor level : 8.8mm Grinding area $\#=43$ size: $300 \times 600 \sim 1000 \times 750$

Floor lever after grinding
Special area \#=8 (1000×750)
$\rightarrow \pm 0.1 \mathrm{~mm}$
Normal area \# = 24
$\rightarrow 0 \sim 0.8 \mathrm{~mm}$
Area having place under base level \# = 11
\rightarrow Level for grinding all place inside each area

3. Alignment for stone table

Stone table (OELZE GmbH) \# = 13 L.1.5m~2.5m WH700mm D:350 or 450 mm Weight:2.2t (L=2.5m) Flatness: JIS1 grade with align T-rail

With 4 air-pad legs Height, Tilt:
with leveling block
Position:
floated by pressured air

Y-direction (Height) alignment
Using $\mathrm{Y}+700 \mathrm{~mm}$ telescope with an alignment scale and precise water level
X-direction (Lateral) alignment
Using $X+700 \mathrm{~mm}$ telescope with two alignment scales
Z-direction (Beam direction) alignment Using plumbs at up- and downstream side.

Photo of R\&D for alignment method A: Auto-level for height $\mathrm{Y}+700 \mathrm{~mm}$ A: Auto-level for height $Y+700 \mathrm{~mm}$
B: Auto-level for direction $X+700 \mathrm{~mm}$ B: Alignlevent scale for height
C: Aliret D: Alignment scale for direction D: Alignment scale for adjustment position F: Stone table with align T-rail G: Air-pad with leveling block

4. Alignment for cordierite support stand

Cordierite (ceramic) support stand \# = 14
It has very good characteristics for vibration and thermal expansion.
Its position was adjusted by floating with pressured air. Its height was adjusted by an spacer plate.

Y-, Z-direction alignment
same method as stone table
X-direction alignment
Position was aligned with an alignment scale.
Angle was aligned by auto collimation method with a mirror, a penta reflector and X+700mm telescope.

A: Penta reflector
B: Mirror for auto collimation C: Plumb
D: Cordierite support stand
E: Jack for alignment position
F: Lead block

5. Alignment for other components

E-Gun tank, undulators, dump magnet, etc. These components were also aligned with each reference surfaces and alignment scales.

Final alignment precision

Components placed within 20 m from telescope: $\pm 0.1 \mathrm{~mm}$
Other components: $\pm \mathbf{0 . 2 m m}$

