XAFS Study on Ag$_2$S Semiconductor Clusters Designed in Nanopores and Their Photoluminescence Properties

Shuai Yuan, Masanori Tomonari, Daisuke Matsuo, Kohsuke Mori, Tetsutaro Ohmichi, Iwao Katayama, and Hiromi Yamashita

Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Abstract. Ag$_2$S clusters were prepared in microporous ZSM-5 and mesoporous AlMCM-41. The state of Ag was analyzed by EXAFS. The pore size of the host has great effects on the photoluminescence property of Ag$_2$S. Compared with Ag$_2$S/ ZSM-5, the emission of Ag$_2$S/ AlMCM-41 shifts to the longer wavelength region.

Keywords: Ag$_2$S cluster, micropore, mesopore, EXAFS, photoluminescence.

PACS: 78.55.Mb

INTRODUCTION

Silver sulfide (Ag$_2$S) possesses sensitivity in a broad range of wavelengths and wide applications as photoelectric materials [1-3]. As the sizes decrease to nano-scale, semiconductor particles will demonstrate new photophysical and photochemical properties different from bulk [4]. However, the quantum-sized clusters or particles are not stable. Using the well-defined micro cavities of zeolite, Ag$_2$S could be highly dispersed in zeolite and show unique photoluminescence properties [5-8]. The structures of the hosts may have different effects on the photoluminescence properties of semiconductor clusters. In this study, Ag$_2$S clusters were synthesized in zeolites with microporous structure and AlMCM-41 with mesopores larger than zeolite micropores.

EXPERIMENTAL SECTION

A typical procedure is as follows. AgNO$_3$, NH$_4$NO$_3$ and NH$_4$OH (28 wt%) were dissolved in deionized water. Then NH$_4$ZSM-5 (Si: Al=35.5: 1) was added to the solution. After stirred in the dark for 24 h, the ion-exchanged product was obtained by centrifugal separation. The product was washed by deionized water and dried at 383 K for 24 h. The obtained grayish powder was noted as Ag$_2$S/ZSM-5(Si/Al=72). For the synthesis of AlMCM-41, at first, C$_{16}$H$_{33}$(CH$_3$)$_3$NBr (CTAB) was solved in the NH$_3$·H$_2$O solution, then Ti(OEt)$_4$ and Al(NO$_3$)$_3$ were added in sequence under stirring. The mole ratio was Si:Al:CTAB: NH$_3$:H$_2$O=1:0.02:0.12:8.6:82. After 3 h, the gel was transferred into an autoclave and kept at 393 K for 48 h. After filtering, washing, drying and calcination, AlMCM-41 was obtained. Ag$_2$S/AlMCM-41(Si/Al=50) was prepared by the same procedure.

Photoluminescence measurements were carried out using an F-4500 fluorescence spectrophotometer (Hitachi) at 77 K. XAFS spectra for Ag K-edge absorption were measured in the transmission mode at BL01B1 line of Spring-8 [9-10]. Fourier transformations were performed on k^2-weighted EXAFS oscillations $k^2\chi(k)$, in the range of 0.3-1.4 nm$^{-1}$ for the Ag$_2$S/zeolite samples.

RESULTS AND DISCUSSION

Ag$_2$S Clusters in Micropores

The Ag$_2$S clusters were prepared in zeolite ZSM-5 by the reaction of Ag$^+$ ion exchanged ZSM-5 and Na$_2$S aqueous solution. The maximum diameter of a sphere
that can be included in the framework of ZSM-5 is about 0.63 nm. The growth of Ag$_2$S clusters was restricted by the framework of ZSM-5.

FT-EXAFS SPECTRA OF Ag$_2$S IN ZEOLITE

Figure 1 shows the FT-EXAFS for Ag$_2$S fine particles and Ag$_2$S/ZSM-5. From comparison with the Ag K-edge EXAFS spectrum of reference Ag$_2$S semiconductor particles, the peaks at around 2.0 and 2.8 Å can be assigned to the neighboring S and Ag atoms, respectively. All zeolite samples having the different Ag content exhibited almost similar spectra. These results indicate that the Ag$^+$ ions in zeolite cavities transformed into Ag$_2$S nanoparticles after the sulfurization.

FIGURE 1. Fourier transform of Ag K-edge EXAFS for the reference Ag$_2$S fine particles (Top) and the Ag$_2$S/ZSM-5 (Bottom).

PHOTOLUMINESCENCE SPECTRA OF Ag$_2$S IN ZEOLITE

The photoluminescence spectra of Ag$_2$S/ZSM-5 are shown in Figure 2. The photoluminescence peaks of Ag$_2$S/ZSM-5 were observed at the shorter wavelength regions than that of Ag$_2$S without support. The photoluminescence peaks of Ag$_2$S/ZSM-5 prepared with the higher Ag$^+$ concentration shifts to the longer wavelength regions and becomes broader, which may be caused by the formation of larger Ag$_2$S clusters with various sizes.

FIGURE 2. Photoluminescence spectra of Ag$_2$S/ZSM-5-0.2 (Ag$^+$ concentration 0.2 mol·l$^{-1}$), Ag$_2$S/ZSM-5-0.5 (Ag$^+$ concentration 0.5 mol·l$^{-1}$) at 77 K by excitation at 460 nm.

Ag$_2$S Clusters in Mesopores

Mesoporous silica AlMCM-41 has 1-dimension pores with diameter about 3 nm. Ag$_2$S cluster can grow larger in mesopores than in micropores, which may result in different photoluminescence properties.

FT-EXAFS SPECTRA OF Ag$_2$S IN AlMCM-41

Figure 3 shows the FT-EXAFS for Ag$^{+}$/AlMCM-41 and Ag$_2$S/AlMCM-41. After ion exchange, the peak at about 1.7 Å observed with Ag$^{+}$/AlMCM-41 can be assigned to the neighboring O atoms. On the other hand, the presence of reduced Ag species is not observed. After reaction with Na$_2$S the main peak is shift to 2.0 Å, which means Ag$_2$S cluster is formed.
It is known that semiconductor quantum dots exhibit size-dependent photoluminescence. The broad distribution of emission indicates that the Ag$_2$S particle size varies in a wide range in AlMCM-41.

CONCLUSION

FT-EXAFS data reveal that Ag$_2$S clusters or nanoparticles can be synthesized by the reaction of Ag$^+$ ion exchanged porous materials with Na$_2$S solution. Micropores and mesopores control the size of Ag$_2$S, which results in different photoluminescence properties. The photoluminescence properties of Ag$_2$S in porous materials can be controlled by changing the pore sizes of hosts.

ACKNOWLEDGEMENTS

The present work is supported by the Grant-in-Aid for Scientific Research (KAKENHI) in Priority Area “Molecular Nan Dynamics” from Ministry of Education, Culture, Sports, Science and Technology (No. 17360388), (No.1734036) & (No. 18656238). The X-ray adsorption experiments were performed at the Spring-8 (2006A1278-NXa-np). This work is partly performed under the project of collaborative research at the Joining and Welding Research Institute (JWRI) of Osaka University.

REFERENCES