XAFS Studies of Silver Environments in Ion-Exchanged Glasses

X. C. Yang¹ and M. Dubiel²

¹College of Materials Science and Engineering, Tongji University, Shanghai 200092, P. R. China ²Department of Physics, Martin Luther University of Halle, D-06108 Halle, Germany

Abstract. The X-ray absorption fine structure (XAFS) technique was used to analyze the structural geometry of Ag atoms introduced into soda-lime silicate glass and soda aluminosilicate glass by ion-exchange methods. The results show that Ag^+ ions in aluminosilicate glass are coordinated by about two oxygens and the nearest-neighbor Ag-O distance increases when the Ag^+ -for-Na⁺ ion-exchange ratio is larger than 0.47. When the exchange ratio is low, the introduced Ag^+ ions are stabilized at the non-bridge oxygen (NBO) site with a Ag-O distance of 2.20 Å, and the Na⁺ ions in the AlØ₄ site are exchanged by Ag⁺ ions after full replacement of the NBO sites with a Ag-O distance of 2.28 Å. The disorder of Ag-O coordination increases with increasing ion-exchange ratio in aluminosilicate glass where Ag⁺ ions are coordinated by NBO and bridge oxygen (BO).

Keywords: Glasses, silver atoms, structural environment, XAFS PACS: 61.10.Ht, 61.46.+w, 81.05.kf

Recently, the preparation and characterization of Ag-doped glass composites has been further stimulated by its peculiar optical properties, especially an increased third-order susceptibility, making such glass a promising candidate for application in integrated optics and photonics [1-3]. Ag⁺ for Na⁺ ionexchange is an easy and important method to introduce Ag⁺ ions into glasses as a first step to obtain Ag nanoparticle-glass composites [4-6]. For Ag⁺ for Na⁺ ion-exchanged glass, Na K-edge extended x-ray absorption fine structure (EXAFS) analysis revealed that Na ions take a large coordination number (CN) of 6.4-7.6 with a Na-O distance of 2.60-2.61 Å at NBO (non-bridge oxygen) site and 5.1-6.4 with a Na-O distance of 2.61-2.62 Å at Al $Ø_4$ ($Ø_4$ represents the bridging oxygen) in silicate and aluminosilicate glasses [7]. Ag K-edge EXAFS analysis on Ag⁺ for Na⁺ ion-exchanged silicate and aluminosilicate glasses showed that Ag⁺ ion has a CN of 2.1 with a Ag-O distance of 2.08 Å at NBO site and a CN of about 2.5 with a Ag-O distance of 2.23 Å at Al \emptyset_4 site [8]. Due to a large decrease of CN by the replacement of Ag⁺ for Na⁺ ions, a large relaxation of local-structure would be induced at NBO and Al $Ø_4$ sites. Yano *et al.* [9] found that when the ion-exchange ratio was low, the introduced Ag⁺ ions were stabilized at the non-bridge oxygen sites, and the Na^+ ions in AlØ₄ sites were exchanged by Ag⁺ ions after full replacement of NBO sites. In this article, silver structural environments in

soda aluminosilicate glass and soda-lime silicate glass were studied by x-ray absorption fine structure technique.

In this research, samples Ag-1, Ag-2, Ag-3, Ag-4 and Ag-5 with different ion-exchange ratio x = Ag / Ag(Ag + Na) of 0.24, 0.38, 0.47, 0.68, and 0.95, respectively, were prepared by soaking 20Na2O- $10Al_2O_3$ -70SiO₂ (mol%) glass samples (10 × 15 × 0.3~0.4 mm) into a fused salt bath of 48Ag₂SO₄-52AgCl (mol %) at 400°C for 15 min ~13 h. In order to decrease the concentration gradient, the sample was held at the same temperature in an ambient atmosphere. The soda-lime glass slides with a composition of 13.3Na2O - 0.31K2O - 8.69CaO -4.15MgO - 0.87Fe₂O₃ - 0.59Al₂O₃ - 72.09SiO₂ (wt %) were immersed in a molten mixture of NaNO3 and 0.05 wt% AgNO₃ held at 330°C for 192 h (Ag-6). After cleaned in deionized-water and ethanol, the ionexchanged samples were subjected to thermal processing in air at 480°C for 7 h (Ag-7).

Ag K-edge (25514 eV) x-ray absorption fine structure spectra were measured at beamline X1 of HASYLAB (Hamburg, Germany) in transmission mode, utilizing a Si (311) double-crystal monochromator. Measurement temperature was kept at 12K by using a liquid helium vapor flow cryostat equipped with an electric heater. The energy resolution of the experiments, $\Delta E/E$, was about 2.5×10^{-4} . Harmonic rejection was achieved by detuning the monochromator crystals between 40% and 50%. The software package UWXAFS 3.0 [10] was used to obtain structural parameters such as coordination number N, interatomic distance r and Debye-Waller factor σ^2 . EXAFS oscillation, $\chi(k)$ was extracted from the raw Ag K-edge x-ray absorption. The $\chi(k)$ oscillation was weighted by k^2 and subsequently Fourier-transformed into real space using a Hanning window function. The uncertainties of coordination number, interatomic distance and Debye-Waller factor are ±0.5 atom, ±0.01 Å and ±0.005 Å², respectively.

FIGURE 1. Ag K-edge x-ray absorption fine structure spectra of different samples.

FIGURE 2. (a) Ag K-edge EXAFS spectra, and (b) the corresponding Fourier transforms of samples Ag-1, Ag-3, Ag-4 and Ag-5. Dot curves are fits calculated by UWXAFS 3.0.

Figure 1 gives the Ag near K-edge x-ray absorption spectra of samples Ag-1, Ag-3, Ag-4 and Ag-5. It shows that distinct differences are observed in the near-edge absorption spectra when the ion-exchange ratio x is more than 0.47, indicating that the structural environment of Ag changes when ion-exchange ratio x exceeds this value.

Figure 2 shows Ag K-edge EXAFS spectra and the corresponding Fourier transforms of samples Ag-1, Ag-2, Ag-3, Ag-4 and Ag-5. The difference in the EXAFS spectra marked as A appears when the ion-exchange ratio x is more than 0.47. Fourier transforms indicate that the amplitude of the first Ag-O shell is reduced gradually with increasing Ag^+ for Na^+ ion-exchange ratio.

Figure 3 gives the Ag K-edge EXAFS spectra and the corresponding Fourier transforms of samples Ag-6 and Ag-7.

FIGURE 3. (a) Ag K-edge EXAFS spectra and (b) the corresponding Fourier transformations of samples Ag-6 and Ag-7. Dot curves are fits calculated by UWXAFS 3.0.

Figure 3 indicates that there are two structural environments for Ag atoms in samples Ag-6 and Ag-7: Ag-O coordination and Ag-Ag coordination. The amplitude of the Ag-Ag shells is larger in sample Ag-7 than in sample Ag-6. The existence of Ag-Ag shells indicates the formation of Ag clusters in soda-lime silicate glass during Ag^+ for Na⁺ ion-exchange, and subsequently thermal treatment induces further growth of Ag clusters.

Sample	Fitting range		Nearest-neighbor Ag-O			Nearest-neighbor Ag-Ag		
			coordination			coordination		
	Δk	Δr	R	σ^2	Ν	r	σ^2	Ν
	(Å ⁻¹)	(Å)	(Å)	(10^{-3} Å^2)		(Å)	(10^{-3} Å^2)	
Ag-1	3-12	1-3	2.19	7.2	1.5			
Ag-2			2.20	10.4	1.6			
Ag-3			2.21	10.8	1.6			
Ag-4			2.28	14.4	1.6			
Ag-5			2.28	14.6	1.6			
Ag-6	3-14	1-3	2.14	6.7	1.6	2.81	10.9	1.8
Ag-7			2.14	4.8	1.3	2.881	5.0	2.5

TABLE 1. Structural parameters obtained from fits using the UWXAFS software package.

Table 1 gives the structural parameters obtained from the fits using the UWXAFS software package. From Table 1, it is found that the Ag⁺ ion in soda aluminosilicate glass is coordinated by about two oxygen and the Ag-O distance increases when the Ag⁺ for Na⁺ ion-exchange ratio is larger than 0.47. When the exchange ratio is lower than 0.47, the introduced Ag⁺ ions are stabilized at the non-bridge oxygen sites with a Ag-O distance of about 2.20 Å, and the Na⁺ ions in Al $Ø_4$ sites are exchanged by Ag⁺ ions after full replacement of NBO sites with a Ag-O distance of 2.28 Å. The disorder in the Ag-O coordination increases with increasing ion-exchange ratio in soda aluminosilicate glass where Ag⁺ ions are coordinated by NBO and BO. Ag⁺ ions are coordinated by NBO with a Ag-O distance of 2.14 Å in soda-lime silicate glass, and the order of Ag-O coordination is higher in soda-lime silicate glass than in soda aluminosilicate glass. Ag-Ag nearest-neighbor distances in samples Ag-6 and Ag-7 are 2.81 Å and 2.88 Å, respectively. Montano et al. [11] observed a small contraction in the Ag-Ag interatomic distances for smaller Ag particles by EXAFS analysis. This is consistent with our results because the Ag particle size is smaller in sample Ag-6 than in sample Ag-7. This is further demonstrated by a larger Debye-Waller factor (DWF) for nearestneighbor Ag-Ag coordination in sample Ag-6 than in sample Ag-7 because smaller Ag particles have larger DWF due to an increasing disorder of surface Ag atoms.

In summary, Ag^+ ions in soda aluminosilicate glass are coordinated by two oxygens and the Ag-O distance increases when the Ag^+ for Na⁺ ion-exchange ratio is larger than 0.47. When the exchange ratio is low, the introduced Ag^+ ions are stabilized at the non-bridge oxygen sites with a Ag-O distance of 2.20 Å, and the Na⁺ ions in AlØ₄ sites are exchanged by Ag⁺ ions after full replacement of NBO sites with a Ag-O distance of 2.28 Å. The disorder of Ag-O coordination increases with increasing ion-exchange ratio in soda aluminosilicate glass where Ag⁺ ions are coordinated by NBO and BO. Besides Ag-O coordination, Ag clusters form in soda-lime silicate glass due to the existence of Fe^{2+} , and subsequently thermal treatment induces growth of Ag clusters. A small contraction was observed in the Ag-Ag interatomic distances for smaller Ag clusters.

ACKNOWLEDGMENTS

Supported by Special Funds of Nanotechnology (0452nm075) and Key Project for Basic Research (05JC14058), Science and Technology Committee of Shanghai municipal government.

REFERENCES

- 1. E.M. Vogel, J. Am. Ceram. Soc. 72, 719 (1989).
- 2. V.P. Drachev, A. Buin, K.H. Nakotte and V.M. Shalaev, *Nano Letters* **4**, 1535 (2004).
- 3. F. Gonella and P. Mazzoldi, in *Handbook of Nanostructured Materials and Nanotechnology*, H.S. Nalwa, ed. (Academic) vol. **1**, p 81 (2000).
- 4. P.W. Wang, L.P. Zhang, Y. Tao and C. Wang, *J. Am. Ceram. Soc.* **80**, 2285 (1997).
- X.C. Yang, M. Dubiel, S. Brunsch and H. Hofmeister, J. Non-Cryst. Solids 328, 123 (2003).
- 6. X.C. Yang, T.L. Du, H. Hofmeister, M. Dubiel and W. Huang, *J. Chin. Ceram. Soc.* **33**, 1371 (2005).
- 7. S.N. Houde-Walter, J.M. Inman, A.J. Dent and G.N. Greaves, *J. Phys. Chem.* **97**, 9333 (1993).
- D.A. McKeown, G.A. Waychunas and G.E. Brown Jr, J. Non-Cryst. Solids 74, 325 (1985).
- T. Yano, T. Nagano, J. Lee, S. Shibata and M. Yamane, J. Non-Cryst. Solids 270, 163 (2000).
- S.I. Zabinsky, J.J. Rehr, A.L. Ankudinov, R.C. Albers and M.J. Eller, *Phys. Rev. B* 52, 2995 (1995).