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Abstract. Neither the theory nor the interpretation of Extended X-Ray-Absorption Fine-Structure (EXAFS) spectroscopy
requires assumptions of crystalline symmetry or periodicity. As a result, EXAFS is a tool applied to a wide range of scientific
disciplines and to a wide variety of experimental systems. A simple enumeration of the atoms in the coordination environment
of the absorber is often the primary goal of an EXAFS experiment. There are, however, a number of pitfalls in the way of
an accurate determination of coordination number (CN). These include statistical limitations of the EXAFS fitting problem,
empirical effects due to sample preparation, and the assumptions made about the physical structure surrounding the absorber
in the course of data analysis. In this paper we examine several of these pitfalls and their effects upon the determination of CN.
Where possible, we offer suggestions for avoiding or mitigating the pitfalls. We hope this paper will help guide the general
EXAFS practitioner through the difficult chore of accurately determining CN.
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Extended X-ray-absorption fine-structure (EXAFS) is
an ideal probe for measuring coordination chemistry in
systems spanning an impressively broad array of scien-
tific disciplines. In many cases, the evaluation of coordi-
nation number (CN) is the principle goal of an EXAFS
experiment. Although the problem of using EXAFS to
determine CN is easily stated, we find that newcomers
to EXAFS analysis frequently stumble over a number
of common pitfalls. In this paper, we discuss several of
these common pitfalls and provide some suggestions to
help in t he accurate determination of CN.

Passive Electron Reduction Factor. The multiple
scattering formalism implemented by FEFF [1] and others
provides a convenient framework for the analysis of EX-
AFS spectra. The measured fine structure χ(k) is under-
stood as the sum of the contributions from all the ways
that the photoelectron can scatter from the neighboring
atoms. The contribution for any given scattering geome-
try can be expressed by Eq. (1) and the contributions for
all scattering geometries (denoted Γ) are summed as in
Eq. (2) to yield the total χ(k).
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The scattering amplitude FΓ(k) and phase shift ΦΓ(k) are
computed by the theory program, as is the photoelectron
mean free path λ (k). The other terms in Eq. (1) are
parameterized and determined by non-linear analysis.

CN, NΓ in Eq. (1), represents the number of atoms
which are at the same distance from the absorbing atom

FIGURE 1. A simple fit to the first shell in aqueous gold
hydroxide. The vertical lines indicate the fitting range. The
insets show the raw data and the background-subtracted χ(k).

and which contribute identically to the measured spec-
trum. Without any further discussion of the mechanics of
parameterizing Eq. (1), we see two challenges to deter-
mining NΓ. NΓ is multiplied by S2

0, the passive electron
reduction factor, and by the scattering amplitude FΓ(k).
S2

0 is a correction to the theory [1] accommodating the
relaxation of the outer shell electrons in the presence of
core-hole. It is well approximated by a number and is
typically between 0.7 and 1.0, but it is not known a pri-
ori for any element. Because NΓ and S2

0 are multiplied in
Eq. (1), they are, for a single shell fit, indistinguishable
in a statistical sense and cannot be independently refined.
Since S2

0 is a parameter of the absorber while NΓ is a pa-
rameter of the scatterer, they may be distinguishable in a
fit to multiple shells.

Consider a first shell fit. Fig. 1 shows data measured on
the gold LIII edge of aqueous gold hydroxide. There, the
gold atom is surrounded by the O atoms of a hydration
shell. The fitting model used a Gaussian distribution of O



atoms, thus the fitting parameters included an amplitude,
a shift to the centroid (R in Eq. (1)), a width of the
distribution (σ 2 in Eq. (1)), and a shift to the energy
reference, E0. The amplitude was refined to 3.58±0.40.

Any interpretation of the measured amplitude requires
confidence in the calculation of FΓ(k) for the Au–O pair,
which in this case was made with FEFF6. The theory
of absorption spectroscopy, although well-established, is
still developing. Any error in the calculation of FΓ(k) be-
comes a systematic error in the measure of the amplitude.

How many O atoms surround the gold atom? Given
the range of expected values for S2

0, there may be less
than 4 or more than 5. One way to determine the CN is
to analyze a known material and to assert chemical trans-
ferability, i.e. that S2

0 for two materials measured under
similar conditions will be the same. Asserting this and
performing a fit to the four shells of gold metal using
all relevant single and multiple scattering paths yields
S2

0 = 0.89± 0.06. Using this and propagating uncertain-
ties yields NΓ = 4.02±0.52 for the aqueous gold hydrox-
ide. Another approach is to use FEFF8 or other theory to
compute S2

0 directly.

Sample Preparation. Accurate determination of CN
starts before the sample is measured. Good sample
preparation is essential to measuring high quality data.
Distortions to data due to sample inhomogeneity [2, 3]
will distort both the amplitude of χ(k) and the measured
values for σ 2. Poor sample preparation introduces the
same systematic error into the determination of CN as
an incorrect calculation of FΓ(k) or determination of S2

0.
Measurements made in fluorescence face an additional

challenge. The depth to which the incident beam pene-
trates changes with energy as χ(k) oscillates. This effect,
known variously as self-absorption or over-absorption,
attenuates both the amplitude and the measured σ 2 val-
ues. While it is possible to approximately correct [4] for
this effect after the fact using knowledge of the measured
system, it is prudent to avoid the problem when possible
using good sample preparation practices.

Normalization. A common approach to data analy-
sis is to isolate χ(k) from the µ(E) spectrum by remov-
ing [5] the background function. The χ(k) is typically
normalized to have unit edge step. This normalization
is found [6] regressing a line to pre-edge region and re-
gressing a quadratic polynomial to the post-edge region.
These polynomials are extrapolated back to the edge en-
ergy where the difference between them is used as the
normalization constant.

Fig. 2 shows the post-edge regression for data from
a U6+ species measured in fluorescence. The top shows
the post-edge regression using the default parameteriza-
tion of the ATHENA [7, 6] program. The bottom shows
the same data, but with parameters chosen such that the

FIGURE 2. Effect of normalization parameters on the evalu-
ation of the edge step normalization for a U6+ compound. The
circles show the range over which the post-edge regressions
were performed. The inset shows the extracted χ(k).

white line was of the same height as a U6+ standard be-
lieved to be the same material. The difference in ampli-
tude of χ(k) seen in the inset is the result of the dif-
ference in the post-edge polynomials and will introduce
error into the determination of CN from these data. To
avoid this error, one must use a clear criterion for choos-
ing the parameterization of the post-edge polynomial, as
was done for the bottom spectrum in Fig. 2.

Non-Gaussian Distributions: Solutions. Implicit to
the determination of CN for the aqueous gold hydroxide,
was the assumption that the hydration shell was Gaus-
sian distributed about the gold atom. It is well-known
that the radial distribution of water molecules around sol-
vated metal atoms [8] is a highly skewed function that
is poorly approximated by a Gaussian distribution. The
value obtained for the CN can only be considered accu-
rate insofar as we believe the function used to describe
the distribution of water about the gold.

A common approach to non-Gaussian distributions is
the cumulant expansion. [9] This approach, however,
becomes increasingly inaccurate [10] as the distribution
becomes increasingly disordered. Codes like FEFF which
use the path expansion of Eq. (2) can be used to model
non-Gaussian distributions by discrete integration over
any distribution function. A histogram with bins placed
on a grid over the range of the distribution function is
used. A path is placed at each bin and the height of the
bin is set to the value of the distribution function at that
grid point. The distribution function used in Ref.[8] can
be successfully reproduced using this approach.

This histogram approach to data analysis is extremely
flexible and well-suited for complicated systems. Indeed,
it shines for multi-model distributions. The remainder of
this paper outlines this approach for complicated mate-
rial systems.



Barium Tantalum Oxynitride. In a recent publica-
tion, the local disorder in the nominally cubic oxynitride
perovskite BaTaO2N was examined. [11] An attempt to
fit Ta K-edge data using a cumulant model for the near-
neighbor atoms was unsuccessful. The quality of the fits
was poor, as seen in Figure 3 and the fit parameters re-
fined to confusing, unphysical values.

FIGURE 3. Fits to the BaTaO2N Ta K-edge data measured
at 100 K data using the cumulant and histogram models.

The fitting model was recast using the results of a total
energy minimization as the basis of the structural model.
This theory introduced significant local distortion due to
the differing ionic radii and electronegativities of the O
and N atoms, with O drawn closer to the Ta absorber and
N pushed away. This results in a multi-model distribution
of atoms in the first and third coordination shells.

All atom pairs from the energy minimization which
involved Ta were extracted from the box and pairs
with similar distances were gathered into histogram bins
0.02 Å wide. A FEFF calculation was used for the contri-
bution from each bin, as in Eq. (1), with the population
of the bin replacing the NΓ term. This model, shown at
the top of Figure 3, is not only an improvement to the fit,
but yielded physically reasonable parameters.

Hydrated Zinc on Titanium Oxide. In a recent publi-
cation [12] the placement of Zn ions adsorbed onto rutile
was examined by EXAFS, x-ray standing waves (XWS),
and density functional theory (DFT). Aqueous Zn is typ-
ically coordinated by 6 O atoms, but may be coordinated
by only 4 O in a crystal. Zn adsorbed onto the rutile sur-
face is expected to be 4 or 6 fold coordinated. Polarized
dependent EXAFS data was collected at the Zn K-edge
and co-refined to determine CN.

Modeling the data with a Gaussian distribution of O
yielded seemingly good fits, but with CN ranging from 5
to 13 and with very large σ 2 values of ∼ 0.020 2. A value
of ∼ 0.002 2 is typical for a Zn–O bond.

The DFT calculations found several possible sites for
Zn on the Rutile surface. Using the theory-derived struc-
tures shown in Figure 4 along with a fraction of aque-
ous Zn, the data at all three polarization were fit well,

including higher shells, with physically sensible parame-
ters and in agreement with the XSW measurements. The
O distribution about Zn on the rutile surface is poorly
described by a Gaussian.

FIGURE 4. Fits to polarization dependent data of Zn ad-
sorbed onto rutile using a Gaussian distribution (A) and the
DFT-derived structure (B).

Accurate determination of CN is not trivial in EX-
AFS data analysis. At best, CN must be interpreted from
the amplitude term refined in a fit. For complicated sys-
tems, accurate determination of CN requires sophisti-
cated structural modeling. References [13] and [14] offer
two more examples of using a path expansion for com-
plicated distributions. A variety of useful tutorials and
presentations discussing the many issues covered in this
short paper can be found on the web at XAFS.ORG. [15]
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5. M. Newville, P. Lı̄viņš, Y. Yacoby, J. J. Rehr, and E. A.
Stern, Phys. Rev. B 47, 14126–14131 (1993).

6. B. Ravel, and M. Newville, J. Synchrotron Radiat. 12,
537–541 (2005).

7. M. Newville, J. Synchrotron Radiat. 8, 322–324 (2001).
8. P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-

Klaucke, and N. Pavel, J. Am. Chem. Soc. 124, 1958–1967
(2002).

9. G. Bunker, Nuc. Inst. Meth. 207, 437–444 (1983).
10. A. Filipponi, J. Phys.: Condens. Matter 13, R23–R60

(2001).
11. B. Ravel, Y.-I. Kim, P. Woodward, and C. Fang, Phys.

Rev. B 73, 184121 (2006).
12. Z. Zhang, P. Fenter, S. Kelly, J. Catalano, A. Bandura,

J. Kubicki, J. Sofo, D. Wesolowski, M. Machesky,
N. Sturchio, and M. Bedzyk, Geochim. Cosmochim. Acta
(2006), accepted.

13. S. Webb, B. Tebo, and J. Bargar, Am. Minerologist 90,
1342–1357 (2005).

14. B. Ravel, E. Cockayne, M. Newville, and K. M. Rabe,
Phys. Rev. B 60, 14632–146462 (1999).

15. XAFS.ORG, a community web site for XAFS and related
techniques, http://xafs.org (2006).




