Radiative corrections to $H \to 4f$ decays

Marcus Weber University of Wuppertal

in collaboration with Axel Bredenstein, Ansgar Denner, Stefan Dittmaier

see hep-ph/0604011

Introduction: $H \to WW^{(*)}/ZZ^{(*)}$ decays

most important decay channels for $m_{
m H}\gtrsim$ 140 GeV

LHC

- ullet most important discovery channels for $m_{\rm H}\gtrsim 130\,{\rm GeV}$
- \bullet most accurate Higgs mass measurement for $m_{\rm H}\gtrsim 130\,{\rm GeV}$ using $H\to ZZ\to 4l$ linear collider
 - measurement of branching fractions to several percent level
- \rightarrow precise theoretical prediction for $H \rightarrow WW^{(*)}/ZZ^{(*)} \rightarrow 4f$ needed

$H \to WW^{(*)}/ZZ^{(*)}$ decays

theoretical status

- $m_{\rm H} > 2m_V$: $H \to WW/ZZ$ real pair production $O(\alpha)$ corrections known [Kniehl '91, Bardin et al '91] some leading higher order [Kniehl, Spira '95; Kniehl, Steinhauser '95] [Ghinculov '95; Frink et al '96]
- $m_{\rm H} < 2m_V$: $H \to WW^{(*)}/ZZ^{(*)}$ three-body decay leading order only [e.g. HDECAY:Djouadi, Kalinowski, Spira '98]

distributions important

- \bullet kinematical reconstruction of Higgs and W/Z
 - \rightarrow real photon radiation important
- verification of Higgs boson spin and CP:
 - \rightarrow uses angular and invariant-mass distributions

[Choi et al '02]

$\Rightarrow H \rightarrow WW/ZZ \rightarrow 4f$ Monte Carlo generator with NLO corrections needed

recent work this talk: full $\mathcal{O}(\alpha)$ electroweak corrections to $H \to WW/ZZ \to 4f$ related: QED corrections to $H \to WW/ZZ \to 4l$: [Carloni-Calame et al '06]

general

- external fermions massless
- virtual corrections:
 - about 400 Feynman diagrams (Feynman gauge), up to pentagons
- mostly standard techniques

evaluation of 1-loop integrals

Passarino-Veltman reduction of tensor loop integrals

- introduces Gram determinants in denominator
- Gram determinants may vanish (at phase space boundary & inside)
 - \rightarrow numerical instabilities

solution

[Denner, Dittmaier '05]

- 5-point
 - \rightarrow direct reduction without inverse Gram determinants
- 3- and 4-point: 2 methods
 - reduction to 1 tensor coefficient \rightarrow numerical integration
 - expansion in small Gram (and other) determinants
- works with complex masses

resonances: complex mass scheme at 1-loop

- splitting of (real) bare mass: $m_{V,0}^2 = \mu_V^2 + \delta \mu_V^2$
- renormalization condition: $\hat{\Sigma}(\mu_V^2) = 0$
 - $\rightarrow \mu_V^2 = m_V^2 i m_V \Gamma_V$ complex mass, used everywhere
 - \rightarrow derived quantities complex, e.g. $\cos \theta_W = \frac{\mu_W}{\mu_Z}$
 - \rightarrow complex masses in loop integrals
- gauge invariant, no double counting
- straightforward implementation

[Denner et al '05]

combination of real and virtual corrections

- real and virtual corrections: soft and collinear singularities
 - \rightarrow cancel in inclusive quantities (KLN theorem)
- combination method: dipole formalism and phase space slicing
- non-collinear safe observables: depend on energy fraction $z = \frac{p^0}{p^0 + k^0}$ of fermion emitting a photon \rightarrow modified dipole formalism and slicing needed [Bredenstein, Dittmaier, Roth '05] collinear singularities remain $\rightarrow \log m_f$

corrections beyond $\mathcal{O}(\alpha)$

- higher order final state radiation collinear photon emission $\rightarrow \alpha \log(m_f^2/q^2)$ included using structure function approach
- Higgs boson self interaction corrections: leading 2-loop

[Ghinculov '95; Frink et al '96]

Checks

checks

- gauge independence: 't Hooft-Feynman gauge and background field method
- UV divergences: cancel after renormalization \rightarrow no dependence on mass scale μ of dimensional regularization
- soft singularities: cancel after real-virtual combination \rightarrow no dependence on $\log m_{\gamma}$
- collinear singularities: drop out in collinear safe observables (e.g. Γ) \rightarrow no dependence on $\log m_f$
- real corrections: checked against MADGRAPH
- combination of real & virtual contributions: phase space slicing and dipole formalism
- 2 independent calculations
 - \rightarrow 2 computer codes for numerical evaluation
 - \rightarrow full numerical agreement (10 digits for $d\Gamma$)

PROPHECY4F

- Monte Carlo generator for $H \to WW/ZZ \to 4f$ including $\mathcal{O}(\alpha)$ corrections
- improved Born approximation includes: Coloumb singularity, leading effects for $m_{\rm H}, m_{\rm t} \gg m_{\rm W}$, fitting constant
- phase space integration multi channel Monte Carlo integration adaptive weight optimization
- partial widths
- histograms: arbitrary observables (also non-collinear safe)

[Berends,Kleiss,Pittau '94] [Kleiss, Pittau '94]

Partial widths: leptonic

 $\mathbf{H} \rightarrow \nu_{\mathbf{e}} \mathbf{e}^+ \mu^- \bar{\nu}_\mu$

 G_{μ} -scheme

NWA: narrow width approximation IBA: improved Born approximation

Marcus Weber

Partial widths: semileptonic

 $H \rightarrow u \bar{u} \mu^- \mu^+$

 G_{μ} -scheme

Comparison with HDECAY

 $\mathbf{H} \rightarrow \nu_{\mathbf{e}} \mathbf{e}^+ \mu^- \bar{\nu}_\mu$

HDECAY

- $\bullet\,$ includes leading 1 and 2-loop corrections for large $m_{\rm H}$
- off-shell effects taken into account below threshold

Distributions: invariant mass

 $H \rightarrow u \bar{u} \mu^- \mu^+$

$$G_{\mu}$$
-scheme, $m_H = 170 \, \text{GeV}$

photon recombination: if $m_{f\gamma} < 5 \,\mathrm{GeV}$

Distributions: angular

$$\mathbf{H} \to \mathbf{e}^- \mathbf{e}^+ \mu^- \mu^+$$

$$G_{\mu}$$
-scheme, $m_H = 200 \, {\rm GeV}$

 ϕ angle between decay planes of e^+e^- and $\mu^+\mu^-$

Marcus Weber

LoopFest, SLAC, June 19-21, 2006

 $H \rightarrow WW/ZZ \rightarrow \mathbf{4}f$ important decay channel

- \bullet discovery and mass measurement at LHC
- distributions important for verification of Higgs properties (spin,CP)

available: complete $\mathcal{O}(\alpha)$ electroweak corrections to $H \to WW/ZZ \to 4f$

- resonances: complex mass scheme
- beyond $\mathcal{O}(\alpha)$: heavy-Higgs effects and final state radiation
- non-collinear safe observables possible

 \Rightarrow Monte Carlo generator: PROPHECY4F

results

- partial width up to $\simeq 8\%$ for $m_{\rm H} \lesssim 500 \,{\rm GeV}$ improved born approximation: accurate to within $\lesssim 2\%$ for $m_{\rm H} \lesssim 500 \,{\rm GeV}$
- distributions

 $\mathcal{O}(10\%)$ with $\gamma\text{-recombination}$ several 10% without $\gamma\text{-recombination}$ for invariant mass distributions

outlook

- QCD corrections
- unweighted events