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Masses are the key observables in SUSY

Most of what we do not already know about supersymmetric exte nsions of

the Standard Model involves the soft SUSY-breaking terms wi th positive

mass dimension.

Predictions of specific models (Minimal Supergravity, Gauge Mediation, Anomaly

Mediation, Extra-dimensional Mediation, ...) allow/require precise calculations.
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The apparent unification of gauge

couplings in the MSSM invites us to

extrapolate the soft masses up to high

scales, to see if they obey some

Organizing Principle.



What is the Organizing Principle behind SUSY breaking?

A reasonable working hypothesis is the Minimal Flavor-Respecting

Supersymmetric Standard Model . It is neither too painfully general, nor too

naively specific:

General MSSM
105 new parameters

MFRSSM
no new flavor or CP violation

Minimal Supergravity (sic)

Gauge-Mediated SUSY Breaking

Anomaly-Mediated SUSY Breaking

Stuff not thought of yet

MFRSSM parameter count:

3 gaugino masses M1, M2, M3

5 sfermion (mass)2 m
2

Q̃
, m

2

ũ, m
2

d̃
, m

2

L̃
, m

2

ẽ

3 (scalar)3 couplings Au0, Ad0, Ae0

3 Higgs mass parameters µ, b, m
2

Hu
, m

2

Hd
(but MZ known)

1 input RG scale Q0

Total: 15 new parameters beyond the Standard Model



Gaugino Mass Unification is a popular and recurring theme.

M1(Q) = M2(Q) = M3(Q) ≡ m1/2 at Q ≈ 2× 1016 GeV,

resulting in

M1 : M2 : M3 ≈ 1 : 2 : 6

for Q near the TeV scale.

To test this, or alternatives to it, we have to relate physica l

masses to running masses in the Lagrangian (with no

superpartners decoupled).

Goal: reduce purely theoretical sources of uncertainty to a
negligible level, if possible.

(Experimental sources of error are a big problem, but not MY problem.)



Predictions of a typical Organizing Principle:
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Determination of the running gluino mass parameter M3 is crucial.
It feeds “strongly” into any attempt to connect TeV scale physics with
high-scale Organizing Principles in SUSY. The uncertainty in M3

will likely dominate the errors in this effort, in the long run.



More generally, 2-loop (and some 3-loop) corrections to

superpartner and Higgs masses will be mandatory if SUSY is

correct, if we want experiment to be the dominant source of error in

understanding Organizing Principles of SUSY breaking.



Some key features of the problem:

1) Two-loop diagrams involve many different mass scales sim ultaneously.

For example:
t̃i

t̃j

t

t

h0

g̃ t̃i t̃j

t

b

C̃k

g̃

Large, diverse, and numerous hierarchies of ratios of squared masses will enter.

Some of these hierarchies can be anticipated in advance, some can’t.

This is a qualitative difficulty generally avoided in multiloop calculations in the

Standard Model, where one knows in advance that

m2
s ≪ m2

c ≪ m2
b ≪ m2

t ,

and calculations are organized around exploiting these hierarchies when doing

multi-loop integrals.



2) To explore Organizing Principles, work in non-decoupled SUSY with

mass-independent renormalization scheme

On-shell schemes are useful, as are effective theories in which some heavier

superpartners are integrated out. Some problems are easier in those schemes.

However:

• For the goal of running up to higher renormalization scales, we will want to

know the running parameters in the full theory.

• Global fits can relate the directly measured observables to running DR input

parameters.

• It is not so clear in advance what the best on-shell scheme input parameters

will be. (For example, in the Higgs sector, A0 mass or H± mass? For

neutralinos and charginos, should the input parameters be masses, or mass

differences, or some even more complicated kinematic function?)



3) Methods should be generic, reuseable from start to finish.

To avoid wasted effort, do calculations for scalars, fermions, vectors

in a general perturbative field theory. Then apply to Higgs, squarks,

sleptons, and to quarks, gluino, charginos, neutralinos, etc., or, ???

After all, SUSY might not be the correct answer, or it might be

an incomplete answer.



To calculate physical masses

Evaluate self-energy = sum of 1-particle irreducible Feynman diagrams:

Π(s) = Π(1)(s) + Π(2)(s) + . . .

where s = the external momentum invariant.

The complex pole mass

spole = M2 − iΓM

is the solution for complex s of:

spole = m2
tree + Π(spole)

= m2
tree + Π(1)(m2

tree)
[
1 + Π(1)′(m2

tree)
]

+ Π(2)(m2
tree) + . . .

The pole mass is gauge invariant at each order in perturbation theory, can be

related to kinematic masses as measured at colliders.



There are a large but finite number of 2-loop, two-point
Feynman diagrams. Why not just do them once, for a
general theory, and get it over with?



Method:

• Reduce all self-energies in general theory to a few basis integrals

• Basis integrals contain DR (or MS) counter-terms, so finite.

• Numerically evaluate basis integrals quickly and reliably for arbitrary masses.

Tarasov’s basis and recurrence relations:

S T U M (“Master integral”)

Can always reduce 2-loop self-energies to a linear combination of these, with

coefficients rational functions of:

s = p2 = external momentum invariant

x, y, z, . . . = internal propagator masses



To evaluate basis integrals:

Values at s = 0 are known analytically, in terms of logs, polylogs.

∂

∂s
(basis integral) = (another self-energy integral)

= (linear combination of basis integrals)

So, we have a set of coupled, first-order, linear differential equations.

Consider the Master integral M(x, y, z, u, v):
x y

z u
v

and the 12 U, S, T basis integrals obtained from it by removing propagators.

Call these 13 integrals In, (n = 1, . . . , 13).



Differential equations method for basis integrals

d

ds
In =

∑

m

KnmIm + Cn

Here Knm are rational functions of s and x, y, z . . ., and Cn are one-loop

integrals. These are obtained by using Tarasov’s recursion relations.

Solve for basis integrals In using

Runge-Kutta integration in the

complex s-plane, starting from

known values at s = 0. Re[s]

Im[s]

thresholds

Method implemented for S, T, U type integrals by Caffo, Czyz, Laporta, Remiddi.

Dave Robertson and I have extended the method to also work for M :



TSIL= Two-Loop Self-energy Integral Library

D.G. Robertson, SPM, hep-ph/0501132

Program written in C, callable from C++, Fortran

• Basis integrals computed for any values of all masses

and s.

• All integrals from a given master integral obtained

simultaneously in a single numerical computation.

• Checks on the numerical accuracy follow from

changing choice of contour.

• Computation times generically ≪ 1 second on

modern hardware.

• TSIL knows all special cases that have been done

analytically in terms of polylogarithms

In the Hopi culture native to

the American southwest, Tsil is

the Chili Pepper Kachina. The

Kachina are supernatural spirits,

represented by masked figurines

and impersonated by ceremonial

dancers. They communicate

between the tribe and their gods,

who live in the San Francisco

mountains and are never seen

directly.



I have computed the 2-loop fermion pole masses in a general

renormalizable theory with massless gauge bosons, in hep-p h/0509115.

Each diagram is reduced to a linear

combination of basis integrals,

ready to be computed numerically

using the computer program TSIL

(SPM, D.G. Robertson 2005).

Special case applications within the

MSSM include the top quark mass,

neutralino and chargino masses,

and the gluino.

BFS BFV MSSFFS MSFFSF VFSSSS

VSFFFS VFSSFF YFSSS MV SFFS MV FFSF

MSSFFV VFSSSV VSFFFV VV FFFS YFSSV (∗)

VV FFFV MV FFV F MV V FFV VFV V V V YFV V V (∗)

VFV V FF VFV V SS YFV V S

+ fermion mass insertions

+ ghost diagrams

+ counterterms



Checks on the calculation of 2-loop fermion pole masses:

• Independent of gauge-fixing parameter

Individual diagrams depend on ξ; cancels in pole mass

• Pole mass is renormalization group invariant

Checked analytically at 2-loop order; numerical check below

• Absence of divergent logs on shell

Individual diagrams have log(1− p2/m2), divergent as p2 → m2;

must and do cancel in pole mass

• Checks in (unphysical) supersymmetric limit

Agrees with earlier calculation of scalar pole mass (SPM hep-ph/0502168)



Gluino pole mass at 2-loop order

(Y. Yamada, hep-ph/0506262; SPM, hep-ph/0509115)

The full formulas are a little too complicated to be presented in a talk, but are in

the second paper. A C program based on TSIL can be obtained at:

zippy.physics.niu.edu/gluinopole/

Instead, I’ll just show some simple special approximations.

In the following, squarks are always assumed to be degenerate and quarks to be

massless, for simplicity. Also,

αs, M3, and msquark

refer to running parameters in the DR scheme, evaluated at a renormalization

scale Q = M3(Q).

The pole mass Mpole
g̃ is computed in terms of these.



Example: In the special case of degenerate running masses, M3 = msquark,

the result for the pole mass simplifies and can be written analytically:

Mpole
g̃ = M3

[
1 +

αs

4π
9 +

(αs

4π

)2 {
54ζ(3) + π2(53− 36 ln 2)− 90

}
+ . . .

]

= M3

[
1 + 0.716 αs + 1.59 α2

s + . . .
]

(M3 and αs are running parameters evaluated at Q = M3 in non-decoupled

theory.)

However, the corrections for heavier squarks are quite larg e. . .



Dependence of gluino pole mass correction on the squark mass es
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For heavier squarks, part of the

large corrections come from large

logarithms that can be resummed

using the renormalization group.

For msquark ≫M3:

Mpole
g̃ = M3

[
1 + 0.955(L + 1)αs + (0.46L2 + 1.53L + 0.90)α2

s + . . .
]

where L ≡ ln(msquark/M3).

Obvious Questions: How big is the theoretical error? Can we e stimate the

3-loop corrections? Is perturbation theory under control?



How NOT to estimate theoretical error: RG scale dependence

Run αS , M3 from Q0 to a new RG scale Q, recompute pole mass:

Red = 1-loop, Blue = 2-loop
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← msquark/M3 = 3

← msquark/M3 = 1.5

← msquark/M3 = 0.9

Scale dependence of 2-loop result is < 1%.

But, the 2-loop correction is much larger than the 1-loop sca le dependence!

Dependence of the computation on the choice of RG scale signi ficantly
underestimates the true theoretical error.



A more useful estimate of the error uses RG and effective field theory techniques

to obtain the 3-loop contributions for large

L = ln(msquark/M3).

Crucial ingredients:

• 2-loop threshold corrections for M3 in MSSM

(SPM 2006)

• 2-loop threshold corrections for αs in MSSM

(Bern, DeFreitas, Dixon, Wong 2002; Harlander, Mihaila, Steinhauser 2005)

• 2-loop pole mass in a theory with only fermions

(Gray, Broadhurst, Grafe, Schilcher 1990)

• 3-loop mass beta function in a theory with only fermions, but in different reps

(Tarasov 1982, unpublished, available from KEK server, only in Russian!)



Three-loop gluino mass corrections for heavy squarks

Exploit the fact that beta functions are easier to compute, known to≥3-loop

order. Let the running parameters in the full MSSM be αs, M3, and in the

effective theory with squarks decoupled, α̂s, M̂3.

Mtop

Mg̃

Msquarks

L = ln(
Msquarks

M3

)

Standard Model: 4-loop QCD beta function known

3-loop α̂s and M̂3 beta functions known (same as “Split SUSY”)

3-loop M
pole
g̃ known in terms of α̂s and M̂3

2-loop threshold corrections give (α̂s, M̂3)↔ (αs, M3)

Full MSSM, no decoupling



Using the effective field theory matching and RG running technique, one obtains

all terms of order

αn
s Ln 1-loop β functions, 0-loop threshold matching

αn
s Ln−1 2-loop β functions, 1-loop threshold matching

αn
s Ln−2 3-loop β functions, 2-loop threshold matching

for all n. The 3-loop pole mass for the gluino is:

Mpole
g̃ = M3

[
1 + 0.955 (L + 1) αs

+ (0.46L2 + 1.53L + 0.90) α2
s

+ (0.19L3 + 0.32L2 + 1.38L + ??? ) α3
s

+ O(M2
3 /m2

Q̃
) + O(α4

s)
]

• The “leading log” does NOT dominate.

• Only a real 3-loop pole mass calculation can tell us what ??? is.



Three-loop “log-enhanced” effects on the gluino pole mass
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The three-loop log corrections are

only shown for

msquarks/M3 > 1.5,

where the approximation may start

to become meaningful.

The actual 3-loop correction involves a non-log-enhanced piece, not captured in

this analysis. However, circumstantially, this seems likely to be under 1%.



Another handle on the 3-loop contribution to the gluino pole mass.

The 3-loop pole mass for a heavy color octet fermion in the presence of 6 ordinary

light quarks can be inferred from Melnikov and van Ritbergen (1999):

Mpole
g̃ = M̂3

[
1 + 0.955 α̂s + 1.69 α̂2

s + 3.4 α̂3
s + O(α̂4

s)
]

Note well: this is the result in an effective theory without squarks.

Equivalently, this is the result you would get in the MSSM if you “forgot” to

compute all diagrams involving squarks, and worked in MS instead of DR.

The α3
S contribution is agreeably small.

BUT WAIT! Maybe it is only small here because of accidental ca ncellation?



In fact, there is a fermion-boson loop cancellation (but not due to SUSY!)

Divide the 3-loop contribution into eleven distinct group theory invariants:

Mpole
g̃ |3-loop/(α̂3

sM3) = 3.4

=
[
+13.8

−11.4 (massless quarks in loop)

+1.7 (massless quarks in loops)

−0.9

+(seven smaller terms)
]

The big contributions all come from diagrams without heavy particle loops.

So maybe it is roughly numerically correct to just add this to the existing

2-loop contribution?



Including the contribution of gluons and quarks:
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Neglects, in the 3-loop part:

• squark loop effects not enhanced by logs

• epsilon scalars in DR



2-loop corrections to scalar self-

energies and pole masses in

a general renormalizable theory

(hep-ph/0502168)

(Approximation: vector boson

masses neglected in diagrams with

two or more vector propagators.)

Applications to Higgs masses,

slepton masses and squark

masses in the MSSM.

+ fermion mass insertions + ghosts

+ counterterms



Many different groups have attacked the problem of the h0 mass using different

schemes (On-shell, DR) and methods (diagrammatic, effective potential, effective

field theory + RG), and combinations of these.

The most important 2-loop corrections are now known in all approaches.

But, what about 3 loops?

For example, Degrassi et al (hep-ph/0212020) estimate a 1-1.5 GeV

contribution coming from leading log 3-loop effects, if Msquark = 1000 GeV.

To address this, I combine:

• diagrammatic approach at 2 loops

• effective field theory + RG method for leading and next-to-leading log 3-loop

corrections in the non-decoupled DR scheme.



Schematic picture of the strategery:

Mtop

MSUSY

L = ln(
MSUSY

Mtop
) 2-loop Standard Model beta functions for λ, ŷt, v̂ and ĝ3 known

2-loop M
pole
h0 known in terms of λ, ŷt, v̂ and ĝ3

Threshold corrections for λ (2-loop) and
yt, v, g3 (1-loop) from diagrammatic calculations

Full MSSM, no decoupling

This gives all contributions at N loop order of the form:

g2j
3 y2N−2j

t LN and g2j
3 y2N−2j

t LN−1.

for each j = 1, 2, . . .N .



For simplicity, in this talk I will present the result in the following

limits:

• Heavy Higgs decoupling mA0 ≫ mh0 .

• Large sin β ≈ 1

• Small top squark mixing

• yt and g3 3-loop corrections only

• Heavy, degenerate superpartners with mass MSUSY ≫ mtop.

Define: L ≡ ln(MSUSY/mtop)



Three-loop correction to the lightest Higgs squared mass in MSSM:

∆m2
h0 =

1

(16π2)3
y2

t
m2

t

[
(5888g4

3 − 5376g2
3y

2
t
+ 720y4

t
)L3

+(2304g4
3 − 1440g2

3y
2
t
+ 666y4

t
)L2

+(??? )L + (??? )
]

• All parameters are running DR, evaluated at Q = MSUSY

• Significant cancellation between strong and Yukawa effects

(more fortuitous than in other schemes)

• Squark mixing and non-degeneracy is significant (to appear)

• To get ??? , need 3-loop Standard Model Higgs coupling beta function, and

2-loop threshold corrections

• To get ??? , need a real 3-loop calculation.



Numerically, these 3-loop L3 and L2 corrections for the h0 mass look like:
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(Assumes mh0 = 120 GeV.)

Top squark mixing adds a significant correction to the L2 piece (to appear).



Questions

• How, precisely, does the gluino pole mass relate to the gluino

mass that will be reported by LHC experiments?

Is the difference negligible?

• How, precisely, do the other sparticle pole masses relate to the

masses that will be reported by the LHC and ILC?

The differences seem unlikely to be negligible.

• What will be the best way(s) to organize input parameters vs.

output parameters?

• What, if anything, can the ILC do to help pin down the gluino

mass parameter?


