

Thomas J. LeCompte High Energy Physics Division Argonne National Laboratory

A U.S. Department of Energy laboratory managed by The University of Chicago

Getting to 1 fb⁻¹ at the LHC

The Main Message

- The most important thing we can do in the early year's running is to get ready for later, high luminosity running
 - I hope to present an overview of the path from 10^{31} to 10^{33} +
- In any measurement, there are two components:
 - 1. Making the measurement correctly
 - 2. Convincing yourself that you've made the measurement correctly
 - Usually #2 is harder than #1

Prediction #1

Prediction #1: Early LHC Luminosity Will be Lower Than We Think/Hope

Why not 10³⁴ on Day One?

Luminosity Equation:

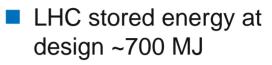
- Quantities we cannot easily change:
 - *f*: revolution frequency of the LHC
 - set by radius and c
 - E: beam energy
 - set by physics goals
 - ε_n : beam emittance at injection
 - set by getting the beam into the LHC

Quantities we can change

 \mathcal{E}_n

- n_b : number of bunches

 $fE n_b N_p^2$


- Factor of 3 lower initially
- β* : strength of final focus
 - Factor of ~2 possible
- N_p : protons per bunch
 - Can be as small as we want
 - Initially, can be within a factor of ~2 of design

This works out to 4 x 10³² on Day One

LHC Stored Energy in Perspective

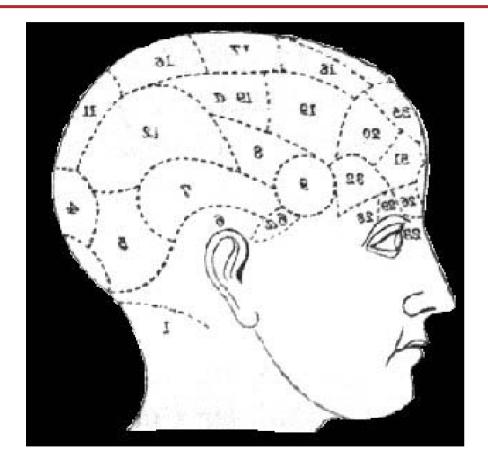
USS New Jersey (BB-62) 16"/50 guns firing

- Power if that energy is deposited in a single orbit: ~10 TW (world energy production is ~13 TW)
- Battleship gun kinetic energy ~300 MJ

Prudence and Luminosity Profile

There is a HUGE amount of stored energy in the LHC at design

- Safety/sanity requires that we operate with less stored energy until we have plenty of experience with beam aborts
 - This means less intense proton beams
 - This means substantially lower luminosity
 - luminosity goes as the square of stored energy
 - We will probably insist on many successful unintentional store terminations before putting more beam in the machine
- Expect that the luminosity will grow slowly
 - Perhaps 10³¹ in 2007
 - Perhaps growing by an order of magnitude a year.
 - If we are not absolutely confident in our ability to tolerate an unintentional store termination, this will grow more slowly



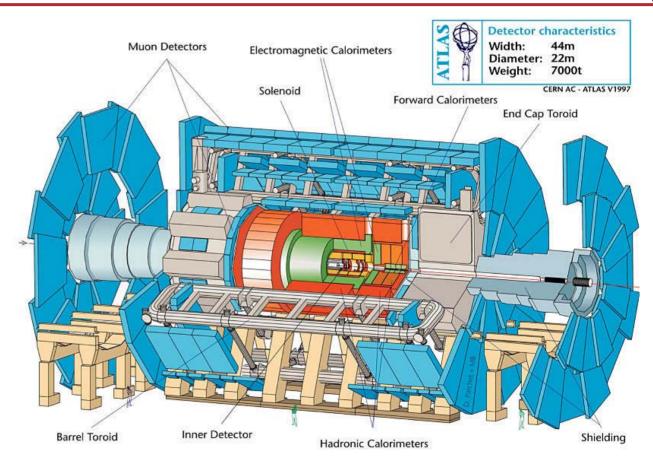
What is 1 fb⁻¹?

- 1 fb⁻¹ = 10¹⁴ collisions
 - 2 nanograms of matter produced in collisions (about the same mass as a cell)
- 1 fb⁻¹ = 10^7 seconds of running at 10^{32}
 - More likely 5 x 10^6 seconds at 2 x 10^{32}
 - The LHC running schedule is not very aggressive
 - 2 x 10³² is an accepted guess for pre-10³⁴ luminosity
- My best guess: this will happen some time in Year 3
- Note that the Tevatron has just hit the 1 fb⁻¹ milestone, 20 years after the first collisions
 - Probably 75% of the collisions it will ever produce will be in the last few years of operation

Prediction #2

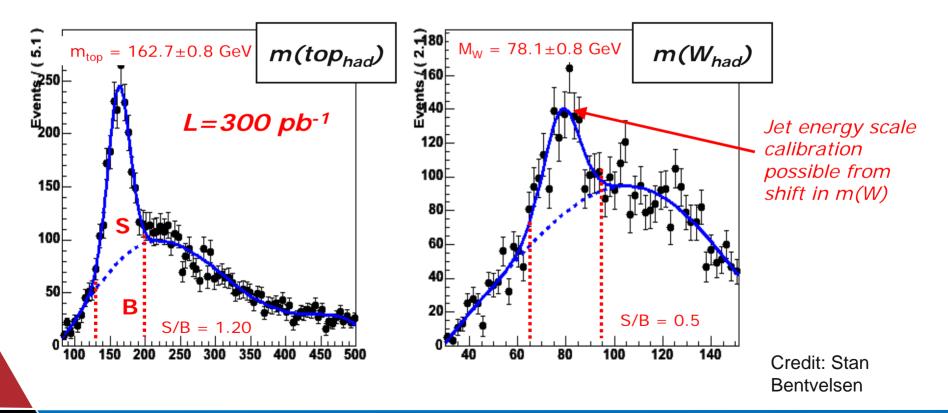
Prediction #2: The Staging of the ATLAS Detector will be Largely Unnoticed outside of ATLAS

Descoping and Staging

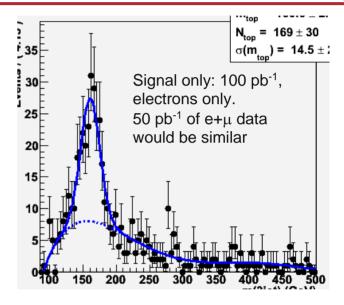

Early descoping: Bent Pyramid of Sneferu c. 2600 BCE

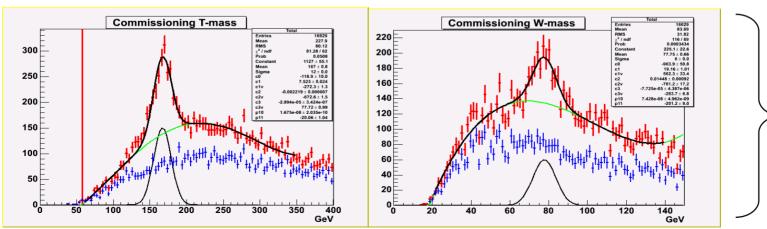
- Not all of ATLAS will be ready to be installed on time
 - See next slide
- "You have to go with the detector you have, not the detector you wish you had"

What Will Be Staged? (My Best Guess)


- Some of the central muon planes –
 - Degrades
 momentum
 resolution
- Some (more) of the forward muon system
 - Reduces muon acceptance
- Innermost silicon layer
 - Reduces B-tagging efficiency
- Trigger and DAQ
 - Lowers maximum luminosity

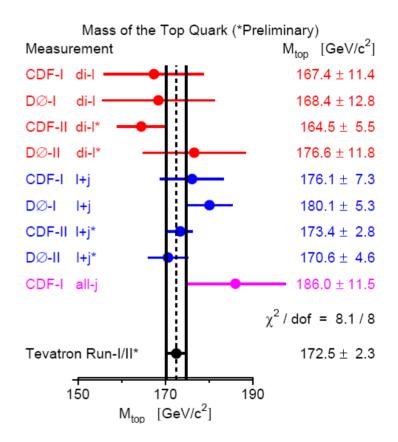
Staging details depend on who finishes first – the detector or the accelerator


How much does poorer B-tagging hurt us?


Top reconstruction at ATLAS without B tagging: just pick the three highest E_T jets in a lepton+4 jets event, and plot.

Early Top Details

- Why is B-tagging less important at the LHC?
 - Top cross-section is growing: σ(t)/σ(W) (and by extension, W+jets) is an order of magnitude larger (exact value is still uncertain)
 - The top and anti-top are more separated
 - kinematic advantage to higher center of mass energy
 - Reduces combinatoric confusion (big problem at the TeVatron)
- Even without the innermost silicon layer, some B-tagging will be possible (comparable to the TeVatron)
 - These predictions are on the pessimistic side



Includes background estimate

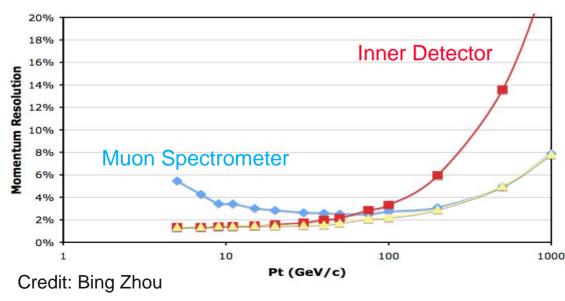
Top Mass at a Femtobarn

- Today's TeVatron top mass uncertainty is 2.3 MeV (hep-ex/0603039)
 - 40% of the uncertainty is statistical, 60% is systematic
 - Based on up to 750 pb⁻¹ (CDF) and 390 pb⁻¹ (D0)
- (My own) scaling to 4 fb⁻¹ suggests an uncertainty near 1.8 MeV
 - Dominated by systematics (1.7 MeV)
- To improve on this, the LHC has to get the systematics under control at the 1% level
 - Typically, this takes years
 - Luminosity helps, but what this level of systematic understanding really needs is time
- This may be difficult to do and to demonstrate early on.
 - Can we "cherry pick" events? We will have ~10000 of them.

Rare Top Decays

- After 1 fb⁻¹, the LHC will have ~an order of magnitude more top quarks than than Tevatron
- Most rare decay signatures do not require the same level of systematic control as m(t). Consider t $\rightarrow c\gamma$
 - Signature 1: γ + 4jets, m(γj_1) = m(t), m($j_2 j_3$)= m(W), m($j_2 j_3 b_4$) = m(t)
 - Signature 2: W + γ + 2jets: m(γj_1) = m(t), m(Wb₂) = m(t)
 - Technical Note: two values for m(Wb₂): only one has to be near m(t)
 - Essentially, the measurement is "cut and count". Jet energy scale uncertainty is a few percent uncertainty on the background; cuts are tuned so that the expected background is ~½ an event
 - B-tagging helps somewhat: there is a tradeoff between kinematic and Btagging cuts
- 1 fb⁻¹ would give limits like $10^{-3} 10^{-4}$ for FCNC decays

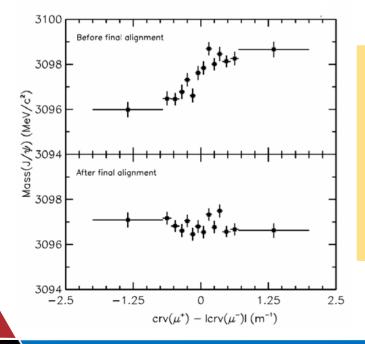
Wish list: it would be very nice if we had a Monte Carlo that could give a boson + N hard jets, with the details of the jet kinematics being predicted well enough to predict the effect of mass cuts like these.


Are Rare Top Decays Even Interesting?

- Even Standard Model top FCNC decays have partial widths millions of times larger than the bottom counterparts
- The problem is that they compete with
 - 2 GeV of t \rightarrow b decays, instead of
 - 400 μeV of b \rightarrow c decays
- For a theory to be interesting to experimenters, we need partial widths in the MeV ballpark

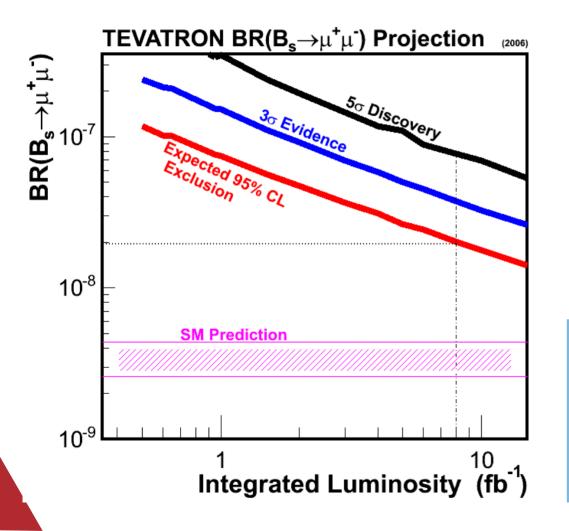
Wish list: If you want experimenters to set limits on a process that you don't expect to be there, it helps to have a model that predicts that something will appear.

This model doesn't have to be any good.


- The ATLAS muon system is designed for a resolution of 10% for 1 TeV muons
 - This requires knowledge of the detector position to ~10's of microns over 10's of meters
 - To remind you, the coefficient of thermal expansion is $\sim 10^{-5}/K$
 - For early running, there won't be any 1 TeV muons
 - Even if the muon spectrometer has initially poorer resolution, the effect on most muons is minimal

Worsening the outer muon spectrometer resolution has virtually no impact below ~100 GeV, and only minimal impact between 100 & 200 GeV.

More on Lepton Identification


- We can use the Z decays to
 - Insure that the electromagnetic calorimeter energy scale is correct
 - Improve the alignment and thus the resolution of the muon spectrometer
- A 10 pb⁻¹ early run should give ~10,000 Z events in each channel
 - Later runs will improve our statistical uncertainty

An example from the Tevatron: tracking misalignments introduce a "false curvature". A particle of known mass (for them the J/ψ , for us the Z) can be used to identify and remove this problem.

Since trackers measure 1/p, not p, going to higher momentum is an interpolation, not an extrapolation.

Tevatron B $\rightarrow \mu\mu$ **Searches**

Br(Bs→μμ)<8.0×10⁻⁸ @ 90%CL Br(Bs→μμ)<1.0×10⁻⁷ @ 95%CL

Br(Bd→μμ)<2.3×10⁻⁸ @ 90%CL Br(Bd→μμ)<3.0×10⁻⁸ @ 95%CL

CDF and D0 limits have been leapfrogging each other since Run II began.

Generic comment about Tevatron discovery: With 1 fb⁻¹ on tape, if we were going to make a 5σ discovery, we would already be starting to see limits fail to improve.

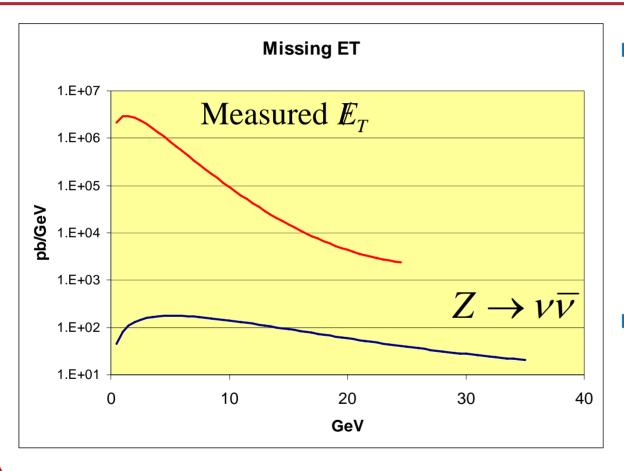
$B \rightarrow \mu \mu$ at the LHC

Good news for the LHC

- Cross-section goes up by ~6
- Acceptance goes up by ~3
- Thicker detectors beat down $B \rightarrow hh$ background
- Bad news for the LHC
 - Triggering forces the p_T threshold up
 - Lose factor of ~5 (?)
- Maybe a reach of 6-8 x 10⁻⁸ is realistic in the 1st femtobarn

- At higher luminosities, the triggering problem becomes worse and worse
- A promising strategy is to trigger on 3 muons
 - Requiring the other B to decay via $b \rightarrow \mu X$ or $b \rightarrow c \rightarrow \mu X$
 - This reduces signal by 5-10
 - This should be devastating to our largest background, intertwined b pairs
- Ultimately, we want sensitivity beyond the SM prediction
 - We will reach this
 - Exactly when depends on background rates and triggerability.

Prediction #3


Prediction #3: Missing E_T will be hard

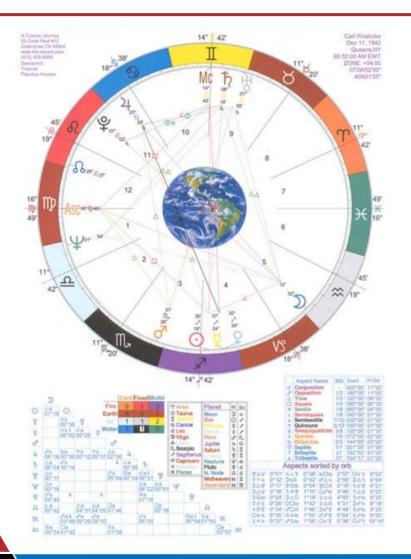
Why Are We Doing This Anyway?

- Find the Higgs
 - This will take years, unless both the following are true:
 - We are lucky
 - Nature is kind
 - A single scalar Higgs and nothing else would be a disaster
 - Progress is made by having disagreements between expectations and measurements
 - Verifying that there is a single scalar Higgs and nothing else will take more than a decade and maybe even an ILC
- Search for SUSY
 - No SUSY would seriously irritate my colleague Carlos Wagner, which would have certain positive "quality of life" issues for me.
 - The party line is "Just look at the inclusive missing E_T distribution; you can't miss it" and occasionally, "The background to SUSY is SUSY"
- Some other surprise

Inclusive Missing E_T is Hard

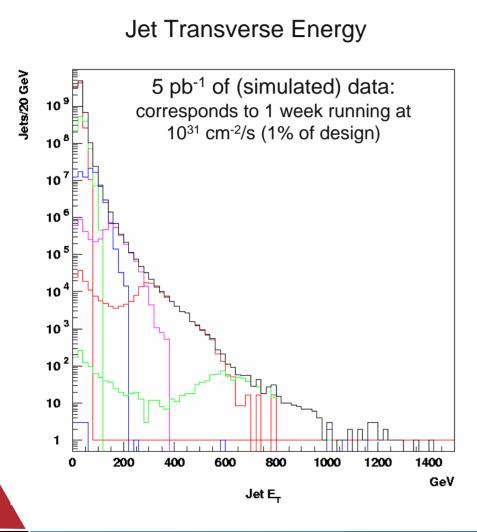
- This plot compares the measurement of inclusive missing E_T with a known source (invisible width of the Z)
 - We're starting with a background ~2 orders of magnitude larger at reasonable E_T.
- This is all Monte Carlo, of course, and the usual disclaimers apply

It ain't SUSY.


- ~98-99% is from mismeasured jets
 - Jet mismeasurement is rare, but there are a heckuva lot of them
 - About ½ of 1% of jets have significant energy loss to neutrinos
 - From <u>light</u> flavor, not heavy flavor!
 - Identification of this process is often but not always easy
- Much of the remainder is from missing ("crack seeking") leptons

Personal Conclusion: We can't do a credible Missing- E_T based SUSY search until we understand jets.

Question for the Audience: Would you believe a Missing- E_T based SUSY search that didn't show a credible $Z \rightarrow vv$ signal?

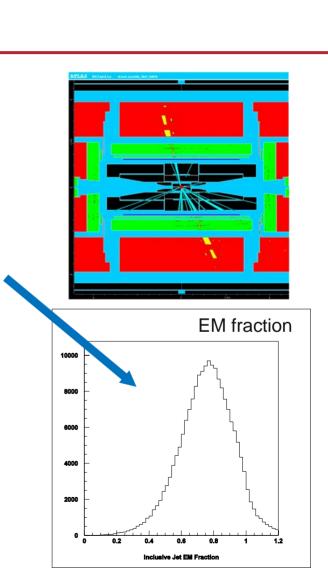


Prediction #4

Prediction #4: Jets Will Be Among Our Most Interesting Early Measurements

Early Jet Measurements

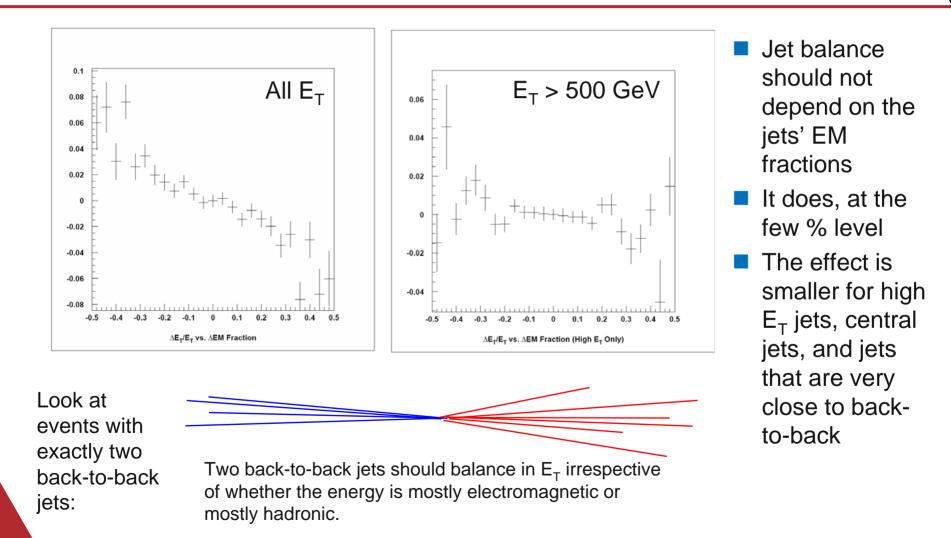
- Expected limit on contact interaction: Λ(qqqq) > ~6 TeV
 - Rule of thumb: 4x the E_T of the most energetic jet you see
 - Present PDG limit is 2.4-2.7 TeV
 - Ultimate limit: ~20 TeV
 - The ATLAS measurement is at lower x than the Tevatron: PDF uncertainties are less problematic
- What about the addition of θ* distribution to improve the early limit sensitivity? Theoretical guidance would be appreciated here.
 - A nice feature is that this depends on the position of the jets instead of the energy.
 - It's harder to mismeasure the position than the energy


Outrunning the Bear

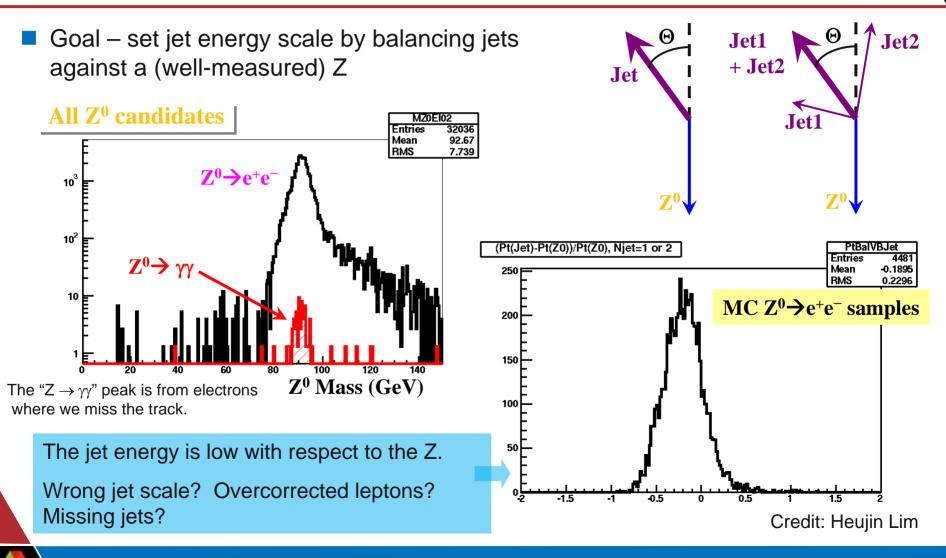
- Present limits on 4-fermion contact interactions from the Tevatron are 2-4-2.7 TeV
- This may hit 3 TeV by LHC turn-on
 - Depends on how many people work on this
- If we shoot for 6 TeV at the LHC and only reach 5 TeV, we've already made substantial progress
- Note that there are ~a dozen jets that are above the Tevatron's kinematic limit: a day at the LHC will set a limit that the Tevatron can never reach.

Getting the X-axis (E_T) Right

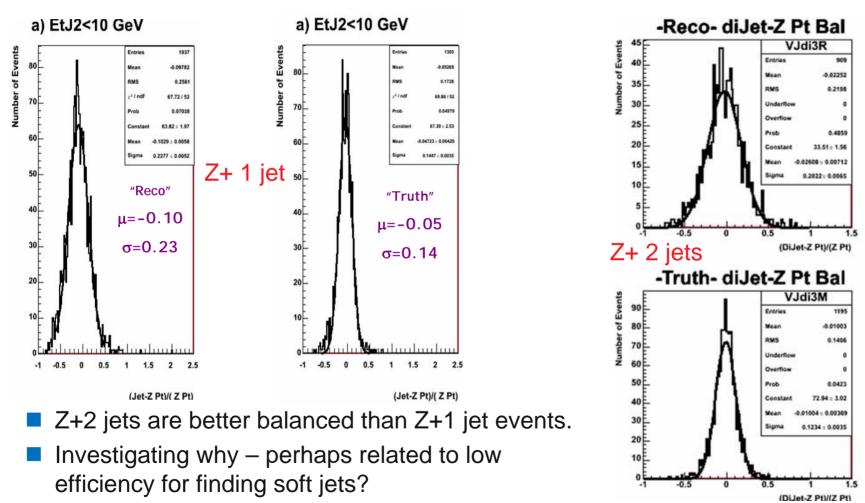
- Starting point:
 - The EM calorimeter is calibrated with the known Z mass using Z decays to electrons
 - Despite being hadrons, most (80%) of the jet energy at ATLAS ends up in the EM calorimeter, not the hadronic calorimeter.
 - The hadronic calorimeter is calibrated from test beam
 - This is probably good to 10% or better
- Improvements:
 - Look at balancing: a jet recoils against a Z, a photon, or another jet. Their p_T's should balance (within higher order effects like k_T)


27

Jet Energy Scale Job List


- See that the Z decay to electrons ends up in the right spot
 - Demonstrates that the EM calorimeter is calibrated
- Balance jets with high and low EM fractions
 - Demonstrates that the EM and hadronic calorimeters have the same calibration
- Balance one jet against two jets
 - Demonstrates that the calorimeter is linear
- Balance jets against Z's and photons
 - Verifies that the above processes work in an independent sample
 - Demonstrates that we have the same scale for quark and gluon jets
- Use top quark decays as a final check that we have the energy scale right
 - Is m(t) = 175 and m(W) = 80? If not, fix it!

Note that most of the work isn't in getting the jet energy scale right. It's in convincing ourselves that we got the jet energy scale right – and that we have assigned an appropriate and defensible systematic uncertainty to it.


Jet Balancing & EM Fraction

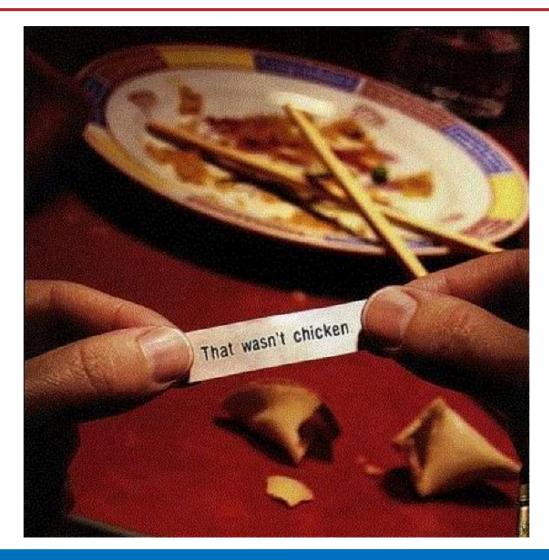
Z-Jet Balancing

Two Jets Are Better Than One!

Credit: Jimmy Proudfoot

A Short Shopping List for Theorists

- At the TeVatron, there is often one dominant signal process and one dominant background process. This is not often the case at the LHC.
 - It appears that the root cause is the lack of antiquarks in the initial state. Getting them off gluons complicates things.
 - In the experimental world, this is known, but not yet felt in our guts
 - Repetition will help here
 - It would be good to have an idea of how uncertain predictions are because of this.
- Many LHC processes (signal or background) produce multiple hard jets
 - Does there exist a Monte Carlo that not only gets the number and spectrum right, but also the detailed kinematics? (e.g. dijet masses, angular separation, etc.)



Conclusions and Prediction #5

- "It is difficult to predict, especially the future"
- I hope I convinced you that
 - We have a lot of work to do to get believable physics out of the LHC
 - We have a vision of the path we need to take to get there, and we've already started down the path (e.g. hunting down 5% effects in the jets)
 - Real life will be harder than our predictions
 - But real life will likely be more exciting than our predictions

May All of Your Predictions Be Pleasant Ones

