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Memento

� The most important thing to keep in mind is a simple fact:

independently of the implementation, each emission in a

shower is based on a collinear approximation

� The larger the angle of emission, the less accurate the

MC prediction

� At the LHC, there is a lot of energy available: very easy

to get large-angle, large-energy emissions



Is predictivity an issue?

To a large extent, it didn’t use to be: MC’s were as good as their ability

to fit the data?

So MC’s with a lot of parameters are likely to fit the data – which is what

made most theorists proud of not knowing anything about MC’s

I There are large uncertainties in QCD: one can go way too far beyond

limits of applicability of the MC, without noticing it

I To stretch the theory to fit data may hide some interesting unknown

physics

We really don’t know what will happen at the LHC: predictivity is an
(important) issue??. Unaware theorists not really ashamed, but less proud

? Data have been instrumental in forcing MC’s to improve/upgrade: colour coherence,

b physics are major examples
?? MC’s must still be able to fit the data to permit unbiased data analysis



A 30” guide to Monte Carlos

Key observation: collinear emissions factorize

dσqq̄g
t→0
−→ dσqq̄ ×

αS

2π

dt

t
Pqq(z)dz

dϕ

2π

t = (pq + pg)
2 , z = Eq/(Eq + Eg)

Obviously, the process can be iterated as many

times as one wants −→ parton shower; emissions

are exponentiated into a Sudakov form factor

� Shower resums leading logarithmic contributions

� The cross sections are always positive (and at leading order)

� Large final-state multiplicities: fully realistic description of the collision process,

including hadronization and underlying event

� Monte Carlos differ in the choice of shower variables: z, t



Showering

It’s all done through

∆(t1, t2) = exp

(
−

1

2π

∫ t2

t1

dt

t

∫ 1−ε(t)

ε(t)

dz αS(z(1− z)t)P (z)

)

0. Compute the LO cross section. Colour connections determine the initial

value of t = tini for each leg. The lowest value t = t0 is a free parameter

1. With r a random number, solve for t

∆(t, tini) = r , t < tini

2. If t < t0, no emission and exit; else, get a z according to P (z), generate

an emission (a branching) with (z, t), set tini = t, and go to 1.

∆(t1, t2) is the no-branching probability for t1 < t < t2



Double logs

QCD has soft divergences. In MC’s they are easy to locate:

z → 1 =⇒ Pqq, Pgg ∼
1

1− z

The choice of shower variables affects the double-log structure

t = z(1− z)θ2E2 (virtuality) =⇒
1

2
log2 t

E2

t = z2(1− z)2θ2E2 (p2
T
) =⇒ log2 t

E2

t = θ2E2 (angle) =⇒ log
t

Λ
log

E

Λ

θ
θ

θ

1

2

3

The choice that respects colour coherence is

angular ordering (Mueller), as in HERWIG:

θ1 > θ2 > θ3



How to improve Monte Carlos?

The key issue is to go beyond the collinear approximation

=⇒ use exact matrix elements of order higher than leading

Which ones?

There are two possible choices, that lead to two vastly

different strategies:

I Matrix Element Corrections

I NLOwPS



Matrix Element Corrections

Compute (exactly) as many as possible real emission diagrams before
starting the shower. Example: W production

. . . . . .

Problems

• Double counting (the shower can generate the same diagrams)

• The diagrams are divergent

Solution

−→ Catani, Krauss, Kuhn, Webber (2001), Lonnblad (2002), Mangano (2005)



NLOwPS

Compute all the NLO diagrams (and only those) before starting the shower.
Example: W production

. . . . . .

Problems

• Double counting (the shower can generate some of the same

diagrams)

• The diagrams are divergent

Solution

−→ This talk



NLOwPS versus MEC

Why is the definition of NLOwPS’s more difficult than MEC?

The problem is a serious one: KLN cancellation is achieved in standard
MC’s through unitarity, and embedded in Sudakovs. This is no longer
possible: IR singularities do appear in hard ME’s

IR singularities are avoided in MEC by cutting them off with δsep. This must be so,

since only loop diagrams can cancel the divergences of real matrix elements

NLOwPS’s are better than MEC since:

+ There is no δsep dependence (i.e., no merging systematics)

+ The computation of total rates is meaningful and reliable

NLOwPS’s are worse than MEC since:

− The number of hard legs is smaller

− Computations are more complicated



NLO and MC computations

NLO cross section (based on subtraction)

(
dσ

dO

)

subt

=
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)×

[
δ(O −O(2→ n + 1))M

(r)
ab +

δ(O −O(2→ n))
(
M

(b,v,c)
ab −M

(c.t.)
ab

)]
←−

←−
MC

FMC =
∑

ab

∫
dx1 dx2 dφn fa(x1)fb(x2) F

(2→n)
MC M

(b)
ab

� Matrix elements −→ normalization, hard kinematic configurations

� δ-functions, F
(2→n)
MC ≡ showers −→ observable final states



NLO + MC −→ NLOwPS?

Naive first try: use the NLO kinematic configurations as initial conditions for showers,

rather than for directly computing the observables

� δ(O −O(2→ n)) −→ start the MC with n “hard” emissions: F
(2→n)
MC

� δ(O −O(2→ n + 1)) −→ start the MC with n + 1 “hard” emission: F
(2→n+1)
MC

Fnaive =
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)×

[
F

(2→n+1)
MC M

(r)
ab + F

(2→n)
MC

(
M

(b,v,c)
ab −M

(c.t.)
ab

)]

It doesn’t work:

I Cancellations between 2→ n + 1 and 2→ n contributions occur after the shower:

hopeless from the practical point of view; and, unweighting is impossible

I (dσ/dO)naive − (dσ/dO)NLO = O(αS). In words: double counting



Solution: MC@NLO (SF, Webber (2002))

The naive prescription doesn’t work: MC evolution results in spurious NLO terms

−→ Eliminate the spurious NLO terms “by hand”: MC counterterms

The generating functional is

FMC@NLO =
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)×

[
F

(2→n+1)
MC

(
M

(r)
ab −M

(MC)

ab

)
+

F
(2→n)
MC

(
M

(b,v,c)
ab −M

(c.t.)
ab +M(MC)

ab

)]

M
(MC)

F(ab) = F
(2→n)
MC M

(b)
ab +O(α2

S
αb

S
)

There are two MC counterterms: they eliminate the spurious NLO terms due to the

branching of a final-state parton, and to the non-branching probability



On MC counterterms

� An analytic computation is needed for each type of MC branching from

a massless leg: there are only two cases!

� Initial-state branchings have been studied in JHEP0206(2002)029

(SF, Webber) and JHEP0308(2003)007 (SF, Nason, Webber)

� Final-state branchings have been studied in JHEP0603(2006)092

(SF, Laenen, Motylinski, Webber)

For each new process, just assemble these pieces into a
computer code. No new computation is required



Difficulties

Apart from conceptual problems, there are numerous technical obstacles that must be

cleared for the implementation of MC@NLO. Examples are:

I QCD has soft and collinear singularities. In the case of initial state emissions,

the hard 2→ n processes that factorize have different kinematics in the soft

and the two collinear limits. But there is only one

F
(2→n)
MC

functional generator, therefore the hard configuration must be unique

I The computation of the MC counterterms

M(MC)

ab

requires a deep knowledge of MC implementation details. The shower variables

have to be expressed in terms of the phase-space variables φn+1 used in the NLO

computation



MC@NLO vs analytical resummations

Cacciari, Mangano, Nason, Ridolfi, SF Grazzini

I Highly non-trivial test (of both computations) for shapes and rates !

I Best-ever agreement with single-inclusive b data at the Tevatron

I Involved cuts in the definition of MT : ∆φl+l− < π/4, Ml+l− > 35 GeV,

p
(l+,l−)
Tmin > 25 GeV, 35 < p

(l+,l−)
T max < 50 GeV, pW W

T
< 30 GeV



More good news on b physics

I These observables are very involved (b-jets at hadron level), and cannot

be computed with analytic techniques

I The underlying event in Pythia is fitted to data; that of Herwig (used in

MC@NLO) does not fit the data well (lack of MPI)



It’s actually even better

The treatment of the UE in Herwig recently improved: Jimmy

I The importance of the underlying event stresses the necessity of

embedding a precise computation into a Monte Carlo framework,

as done in MC@NLO



The ultimate test: single-top production

I Hadron pT relative to the jet axis: hard emissions show up

I B-hadron pT : hard emission effects are striking

(but cannot be predicted by pure NLO)

There is ample evidence of MC@NLO improving both NLO computations
and standard MC simulations



NLOwPS is a brand new field

Although somewhat undermanned, there is a lot of ongoing activity

I First working hadronic code: Φ-veto (Dobbs, 2001)

I Automated computations of ME’s: grcNLO (GRACE group, 2003)

I Absence of negative weights (Nason, 2004)

I Showers with high log accuracy in φ3
6 (Collins, Zu, 2002–2004)

I Proposals for e+e− → jets (Soper, Krämer, Nagy, 2003–2005; Giele, Kosower, 2006?)

The idea of including NLO matrix elements into MC’s, however, dates back to the 80’s.

Why did it take so long to arrive at a working solution?

� The key point: the cancellation of IR singularities in an observable-
and process-independent manner (sort of “exclusive”), as done in the
universal subtraction formalisms

A similar understanding at NNLO would pave the way to NNLOwPS



Event generation in MC@NLO

� Compute the integrals

JH =
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)

∣∣∣M(r)
ab −M

(MC)

ab

∣∣∣

JS =
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)

∣∣∣M(b,v,c)
ab −M

(c.t.)
ab +M(MC)

ab

∣∣∣

� Get NH 2→ n + 1 events and NS 2→ n events, with

NH = Ntot

JH

JS + JH

, NS = Ntot

JS

JS + JH

� For each phase-space point (x1, x2, φn+1), H and S kinematic configurations

are unambiguously determined, and related by a map

PH→S



An alternative event generation: βMC@NLO

� Compute the integral

JH+S =
∑

ab

∫
dx1 dx2 dφn+1 fa(x1)fb(x2)

∣∣∣M(r)
ab +M

(b,v,c)
ab −M

(c.t.)
ab

∣∣∣

� For each phase-space point (x1, x2, φn+1), generate either H or S kinematics

according to the ratio of weights

wH =
∣∣∣M(r)

ab −M
(MC)

ab

∣∣∣ , wS =
∣∣∣M(b,v,c)

ab −M
(c.t.)
ab +M(MC)

ab

∣∣∣

I Tested in e+e− → 2 jets and H1H2 → lνl: reduces the fraction of

negative weights to less than 1%!

I But: expansion to O(αSα
b
S
) in the regions where the signs of wH and

wS differ doesn’t coincide with NLO −→ double counting



W+ −→ lνl with βMC@NLO

I No evidence of double counting in e+e− → 2 jets and H1H2 → lνl

I Fractions of negative weights: 7.5%−→ 0.03% (2 jets), 9%−→ 0.8% (lνl)

wH and wS have opposite signs only whereM(MC)

ab 6= 0
=⇒ NLO results are irrelevant there

βMC@NLO is a very interesting option, which is worth further studies



A step further

MC@NLO is based on a strategic assumption:

The Monte Carlo is a black box

Advantage: the MC will not be modified, and

will work as usual

Disadvantage: a detailed knowledge of the MC

is required

A different strategy: force the MC to “comply” with NLO



pMC@NLO (Nason (2004))

Basic idea: exponentiate exact real corrections into an MC Sudakov
for the first emission

∆̃(t1, t2) = exp

[
−αS

∫ t2

t1

dt
R

tB

]
−→ F̃MC

(
∆̃∆n

)

FpMC@NLO = σtotF̃MC(0) , σtot = total rate

This is a simplified and somewhat imprecise notation

I Generate the hardest emission first, with ∆̃(t1, t2)

I Generate the remaining emissions with ∆(t1, t2) as usual

By generating the largest pT in the first emission, angular
ordering is violated



pMC@NLO vs MC@NLO

I All radiation through Sudakovs =⇒ no negative weights

I Largest pT first =⇒ the MC must know how to handle vetoed showers

I The “right” ordering is in angle: need to introduce vetoed &

truncated showers which restore colour coherence

Kinematics issues

MC@NLO: n-body matrix elements integrated over (n + 1)-body

phase space: definition of a projection PMC@NLO
H→S

pMC@NLO: (n + 1)-body matrix elements integrated at fixed

variables for reduced n-body matrix elements: definition of a

projection PpMC@NLO

S→H

=⇒ can define PpMC@NLO

S→H
= (PMC@NLO

H→S
)−1



Outlook

MC@NLO “mainstream” (Del Duca, Laenen, Oh, Oleari, Motylinski, Webber, SF)

I Used for some bb̄ and tt̄ analysis at the Tevatron, and for several

simulations at the LHC. MC’s have increased their predictive power

I Increasing number of processes: currently working on dijets, spin corr in

tt̄ and single top, Wt mode for single top, Higgs in VBF

Theoretical developments

I New formalisms: MC@NLO is not an unique solution; pMC@NLO,

which has no negative weights, is close to be formulated (Oleari,

Nason, SF) in full generality. Work by several groups

I Inclusion of EW corrections into the formalism

I Automated one-loop computations into MC@NLO: increased flexibility

I General NNLO subtraction approaches −→ NNLOwPS ?


