# Numerical Computation of a Non-Planar Two-Loop Vertex Diagram 

Elise de Doncker, ${ }^{1}$<br>Department of Computer Science, Western Michigan University,<br>Kalamazoo, MI 49008<br>Yoshimitsu Shimizu, ${ }^{2}$<br>Hayama Center for Advanced Studies, The Graduate University for Advanced Studies, Hayama, Miura-gun, Kanagawa, 240-0193, Japan<br>Junpei Fujimoto and Fukuko Yuasa ${ }^{3}$<br>High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan

## Overview.

$\diamond$ The two-loop crossed vertex diagram gives rise to a six-dimensional integral, where the outer integration is over the simplex $z_{1}+z_{2}+z_{3}=$ 1 and the inner integration over the hyper-rectangle $[-1,+1]^{3}$. The factor $1 / D_{3}^{2}$ in the integrand has a non-integrable singularity interior to the integration domain and a singularity on the boundary.
$\diamond$ The integral can be evaluated by iterated numerical integration.

[^0]$\diamond$ We also study a sector transformation which rewrites the original problem as a sum of three five-dimensional integrals (two of which are equal through symmetry) and eliminates the boundary singularity.
$\diamond$ The interior singularity is handled by replacing $D_{3}$ in the denominator by $D_{3}-i \varepsilon$ and treating the integral in the limit as $\varepsilon \rightarrow 0$. This is accomplished numerically via an extrapolation.
$\diamond$ The integration and extrapolation are performed automatically.
$\diamond$ We verify the results with data published in the literature.

## 1 Introduction

$\diamond$ The scalar non-planar two-loop vertex integral, according to Kurihara et al. (2005) [10], is
$I F=\frac{1}{8} \int_{0}^{\infty} \mathrm{d} z_{1} \mathrm{~d} z_{2} \mathrm{~d} z_{3} \delta\left(1-\sum_{j=1}^{3} z_{j}\right) z_{1} z_{2} z_{3} \int_{-1}^{1} \mathrm{~d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} y_{3} \frac{1}{\left(D_{3}-i \varepsilon\right)^{2}}$,
where $D_{3}$ is a quadratic in $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\tau}$, and $D_{3}$ depends on the masses $m_{j}, 1 \leq j \leq 6$ and on $s_{\ell}=p_{\ell}^{2}, \ell=1,2,3$.
$\diamond$ The problem is scalar in view of the constant numerator in the integrand. If the numerator is a polynomial, the problem is non-scalar.
$\diamond$ The integral is interpreted in the limit as the parameter in the denominator, $\varepsilon \rightarrow 0$.


Nonplanar vertex two-loop diagram

Specifically,

$$
\begin{equation*}
D_{3}=\vec{y}^{\tau} A \vec{y}+\vec{b}^{\tau} \vec{y}+c, \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\frac{1}{4}\left(\begin{array}{ccc}
-z_{1}^{2}\left(z_{2}+z_{3}\right) & z_{1} z_{2} z_{3}(-s 1-s 2+s 3) / 2 & z_{1} z_{2} z_{3}\left(-s_{1}+s_{2}-s_{3}\right) / 2 \\
z_{1} z_{2} z_{3}\left(-s_{1}-s_{2}+s_{3}\right) / 2 & -z_{2}^{2}\left(z_{3}+z_{1}\right) s_{2} & z_{1} z_{2} z_{3}\left(s_{1}-s_{2}-s_{3}\right) / 2 \\
z_{1} z_{2} z_{3}\left(-s_{1}+s_{2}-s_{3}\right) / 2 & z_{1} z_{2} z_{3}\left(s_{1}-s_{2}-s_{3}\right) / 2 & -z_{3}^{2}\left(z_{1}+z_{2}\right) s_{3}
\end{array}\right) \\
\vec{b}=\frac{1}{2} U\left(\begin{array}{c}
z_{1}\left(m_{3}^{2}-m_{4}^{2}\right) \\
z_{2}\left(m_{5}^{2}-m_{6}^{2}\right) \\
z_{3}\left(m_{2}^{2}-m_{1}^{2}\right)
\end{array}\right)
\end{gathered}
$$

$c=\frac{1}{4} U\left(z_{1} s_{1}+z_{2} s_{2}+z_{3} s_{3}-2\left(m_{3}^{2}+m_{4}^{2}\right) z_{1}-2\left(m_{5}^{2}+m_{6}^{2}\right) z_{2}-2\left(m_{1}^{2}+m_{2}^{2}\right) z_{3}\right)$ and

$$
U=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}
$$

$\diamond$ The outer integral (in $z_{1}, z_{2}, z_{3}$ ) of 1 is taken over the unit simplex, $1-\Sigma_{j=1}^{3} z_{j}=0$.
$\diamond$ The inner integral is over the three-dimensional hyper-rectangle $-1 \leq y_{j} \leq 1,1 \leq j \leq 3$.
$\diamond$ Note that $D_{3}=0$ at $z_{1}=z_{2}=z_{3}=0$.

## 2 Transformation

$\diamond$ We apply a transformation which was used to handle infrared divergent loop integrals by Binoth et al. [3].
$\diamond$ This casts the integral $I F$ in the form

$$
I F=I_{1} F+I_{2} F+I_{3} F,
$$

where $F=F(\vec{z})$ represents the inner integral, and the integrals in the sum are taken over sectors of the first octant in three-space, i.e.,

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty} d z_{1} \int_{0}^{z_{1}} d z_{2} \int_{0}^{z_{1}} d z_{3} F(\vec{z}), \\
& I_{2}=\int_{0}^{\infty} d z_{2} \int_{0}^{z_{2}} d z_{1} \int_{0}^{z_{2}} d z_{3} F(\vec{z}), \\
& I_{3}=\int_{0}^{\infty} d z_{3} \int_{0}^{z_{3}} d z_{1} \int_{0}^{z_{3}} d z_{2} F(\vec{z}) .
\end{aligned}
$$

$\diamond I_{1}$ is transformed according to

$$
\begin{aligned}
& z_{1} \\
& z_{2}=t_{1} z_{1} \\
& z_{3}=t_{2} z_{1}
\end{aligned}
$$

This yields $I_{1}$ in the form
$I_{1}=\frac{1}{8} \int_{0}^{\infty} \mathrm{d} z_{1} \int_{0}^{1} \mathrm{~d} t_{1} \int_{0}^{1} \mathrm{~d} t_{2} t_{1} t_{2} \delta\left(1-z_{1}\left(1+t_{1}+t_{2}\right)\right) z_{1}^{5} \int_{-1}^{1} \mathrm{~d} \vec{y} \frac{1}{\left(D_{3}-i \varepsilon\right)^{2}}$
where

$$
D_{3}=z_{1}^{3}\left(A_{1}+B_{1}+C_{1}\right) .
$$

$\diamond$ Furthermore, writing

$$
z_{1}^{5} \frac{1}{\left(D_{3}-i \varepsilon\right)^{2}}=\mathcal{R}+i \mathcal{I},
$$

we have

$$
\mathcal{R}=\frac{1}{z_{1}} \frac{\left(A_{1}+B_{1}+C_{1}\right)^{2}-\varepsilon^{2} / z_{1}^{6}}{\left(\left(A_{1}+B_{1}+C_{1}\right)^{2}+\varepsilon^{2} / z_{1}^{6}\right)^{2}}
$$

and

$$
\mathcal{I}=\frac{2 \varepsilon}{z_{1}^{4}} \frac{A_{1}+B_{1}+C_{1}}{\left.\left(A_{1}+B_{1}+C_{1}\right)^{2}+\varepsilon^{2} / z_{1}^{6}\right)^{2}} .
$$

$\diamond$ The dimension reduction is achieved by the transformation

$$
z_{1}=\frac{u_{1}}{1+t_{1}+t_{2}}
$$

so that $d z_{1} / z_{1}=d u_{1} / u_{1}$ and

$$
\delta\left(1-z_{1}\left(1+t_{1}+t_{2}\right)\right)=\delta\left(1-u_{1}\right) .
$$

The integration in $u_{1}$ thus reduces to setting $u_{1}=1$ in the integrand.
$\diamond$ The resulting integral for $I_{1}$ is:

$$
\begin{gathered}
I_{1}=\frac{1}{8} \int_{0}^{1} \mathrm{~d} t_{1} \int_{0}^{1} \mathrm{~d} t_{2} \int_{-1}^{1} \mathrm{~d} \vec{y} \frac{\left(A_{1}+B_{1}+C_{1}\right)^{2}-\varepsilon^{2}\left(1+t_{1}+t_{2}\right)^{6}}{\left(\left(A_{1}+B_{1}+C_{1}\right)^{2}+\varepsilon^{2}\left(1+t_{1}+t_{2}\right)^{6}\right)^{2}} \\
+\frac{2 i \varepsilon\left(A_{1}+B_{1}+C_{1}\right)\left(1+t_{1}+t_{2}\right)^{3}}{\left(\left(A_{1}+B_{1}+C_{1}\right)^{2}+\varepsilon^{2}\left(1+t_{1}+t_{2}\right)^{6}\right)^{2}} .
\end{gathered}
$$

$\diamond I_{2}$ and $I_{3}$ are derived in a similar manner.

## 3 Numerical Integration

$\diamond$ In $[6,7]$ we used iterated integration together with extrapolation methods to compute various one-loop (scalar and nonscalar) integrals and a two-loop planar vertex integral.
$\diamond$ E.g., the three-dimensional non-scalar box integral in [7] was evaluated by iterated integration as a $1 \mathrm{D} \times 1 \mathrm{D} \times 1 \mathrm{D}$ integral by applying a one-dimensional adaptive method in every coordinate direction.
$\diamond$ Iterated integration methods have further been examined theoretically and experimentally in $[12,11]$.
$\diamond$ For the current computation we can apply iterated adaptive numerical integration to the 5 D integral as a $2 \mathrm{D} \times 1 \mathrm{D} \times 1 \mathrm{D} \times 1 \mathrm{D}$ problem (after the sector transformation which transforms the outer 3D integral to 2D). The inner three dimensions need substantial subdivision in view of the quadratic hypersurface singularity.
$\diamond$ An alternative approach is by treating the original problem as a $(1 D)^{6}$ iterated integral.
$\diamond$ A general outline of the adaptive numerical integration algorithm (applied for each group of iterated dimensions) is given below.

> Evaluate initial region and initialize results Put initial region on priority queue while (evaluation limit not reached $\quad$ and estimated error too large)
> Retrieve region from priority queue Split region
> Evaluate new subregions and update results Insert subregions into priority queue
$\diamond$ The user specifies the function $f(\mathbf{x})$, integration limits (for a domain $\mathcal{D}$ ), requested absolute and relative accuracies $\varepsilon_{a}$ and $\varepsilon_{r}$, respectively, and determines a limit on the number of subdivisions.
$\diamond$ The (black box) algorithm calculates an integral approximation $Q f \approx I f=\int_{\mathcal{D}} f(\vec{x}) d \vec{x}$ and an absolute error estimate $E f$, with the aim to satisfy a criterion of the form $|Q f-I f| \leq E f \leq$ $\max \left\{\varepsilon_{a}, \varepsilon_{r}|I f|\right\}$ within the allowed number of subdivisions, or indicate an error condition if the subdivision limit has been reached.
$\diamond$ The Quadpack [13] adaptive routine DQAGE was used for the 1D quadrature problems, with a 7 and 15 -point Gauss-Kronrod quadrature rule pair on each subinterval.
$\diamond$ The multivariate integration was based on DCUHRE [9, 2] and its cubature rule of polynomial degree 7 for integration over the subregions. A parallel implementation of this method is layered over MPI in Parint [1].

## 4 Extrapolation

$\diamond$ Assuming the integral $I=I(\varepsilon)$ of (1) has an asymptotic expansion in terms of the form $\varepsilon^{k} \log ^{\ell} \varepsilon, k \geq 0, \quad \ell \geq 0$ integer, algorithms such as the $\varepsilon$ algorithm $[14,16]$ are valid for accelerating convergence when supplied with a sequence of $I\left(\varepsilon_{j}\right)$ for a geometric progression of $\varepsilon_{j}$.
$\diamond$ Table 1 shows a sample extrapolation table obtained for the crossed vertex two-loop problem with parameters $m_{1}=m_{2}=m_{4}=m_{5}=$ $150 \mathrm{GeV}, m_{3}=m_{6}=91.17 \mathrm{GeV} ; s_{1}=s_{2}=150^{2} \mathrm{GeV}^{2}$ and $s_{3} / m_{1}^{2}=5$.

Table 1: Sample extrapolation table

| $j$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 32 | $0.1019 \mathrm{E}-08$ |  |  |  |
| 31 | $0.1096 \mathrm{E}-08$ | $0.1480 \mathrm{E}-08$ |  |  |
| 30 | $0.1160 \mathrm{E}-08$ | $0.1411 \mathrm{E}-08$ | $0.1441 \mathrm{E}-08$ |  |
| 29 | $0.1211 \mathrm{E}-08$ | $0.1478 \mathrm{E}-08$ | $0.1469 \mathrm{E}-08$ | $0.1464 \mathrm{E}-08$ |
| 28 | $0.1254 \mathrm{E}-08$ | $0.1468 \mathrm{E}-08$ | $0.1451 \mathrm{E}-08$ |  |
| 27 | $0.1290 \mathrm{E}-08$ | $0.1462 \mathrm{E}-08$ |  |  |
| 26 | $0.1319 \mathrm{E}-08$ |  |  |  |

$\diamond$ The entries in the leftmost column of the table are approximations to $I\left(\varepsilon_{j}\right)$ computed by numerical integration of the 5D integral for requested relative tolerances of $10^{-3}$.
$\diamond$ It should be noted that it is generally preferable to increase the accuracy requirement toward the inner integrations. A scheme for setting the error toleranced for the iterated integrations is under study [5].
$\diamond$ The extrapolation shown here is performed with $\varepsilon=\epsilon^{j}$ where $\epsilon=1.2$ and $j=32(-1) 26$. The result agrees with the data in [10].

Table 2: Real Part (in units of $10^{-9}$ )

| $\left(s_{3} /(m * * 2)\right.$ | Tarasov [15] <br> (hep <br> ph/9505277) | Ferroglia [8] <br> (hep <br> ph/0311186) | KEK <br> Minami <br> Tateya |
| :---: | :--- | :--- | :--- |
| 4.0 | $0.733120(0.02)$ | $0.7331(1)$ | $0.733120(2)$ |
| 4.5 | $0.61644824(0.1)$ | $0.6216(78)$ | $0.61650(2)$ |
| 5.0 | $0.5184444(0.3)$ | $0.5203(40)$ | $0.51845(1)$ |
| 8.0 | $0.14555(0.7)$ | $0.1455(20)$ | $0.1455223(5)$ |
| 20.0 | $-0.2047(0.8)$ | $-0.2058(5)$ | $-0.20471(4)$ |
| 100.0 | $-0.0382(3)$ | $-0.0385(1)$ | $-0.0382(2)$ |

Table 3: Imaginary Part (in units of $10^{-9}$ )

| $\left(s_{3} / m * * 2\right)$ | Tarasov [15] <br> (hep <br> ph/9505277) | Ferroglia [8] <br> (hep <br> ph/0311186) | KEK <br> Minami <br> Tateya |
| :---: | :--- | :--- | :--- |
| 4.5 | $-0.3349475(1)$ | $-0.3402(71)$ | $-0.3349(1)$ |
| 5.0 | $-0.430997(0.3)$ | $-0.4442(93)$ | $-0.43100(5)$ |
| 8.0 | $-0.5460(0.5)$ | $-0.5491(40)$ | $-0.54594(1)$ |
| 20.0 | $-0.1876(4)$ | $-0.1864(4)$ | $-0.187578(10)$ |

$\diamond$ Table 2 shows results obtained with the $(1 D)^{6}$ approach for parameters $m_{1}=m_{2}=m_{3}=m_{4}=m_{5}=m_{6}=m=150 \mathrm{GeV} ; s_{1}=$ $s_{2}=0$ (Real Part). Table 3 lists the corresponding Imaginary Part data.

## 5 Conclusions

$\diamond$ The scalar crossed two-loop Feynman diagram gives rise to a sixdimensional integral. The integration in the outer three dimensions is over a simplex, while the inner integration is taken over a threedimensional hyper-rectangle. The integrand has singularities on the boundary and within the domain.
$\diamond$ The integral can be approximated directly by iterated integration over the six dimensions.
$\diamond$ Alternatively, we can apply a sector transformation which rewrites the problem as a sum of three (two, through symmetry) five-dimensional integrals. Apart from the removal of the boundary singularity and the mapping to a hyper-rectangular domain, the reduction in dimension is significant for reducing the cost of the subsequent numerical cubature.
$\diamond$ The transformation can be implemented automatically via symbolic manipulation (cf, [3]). For the subsequent automatic cubature, the software is supplied with the integrand, domain, requested accuracies and limits on the number of subdivision; it returns a result and estimated error.
$\diamond$ As such, this paper is part of an effort to increase the automatization in computing Feynman diagrams.

## References

[1] http://www.cs.wmich.edu/parint, PARInT web site.
[2] Berntsen, J., Espelid, T. O., And Genz, A. Algorithm 698: DCUHRE-an adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17 (1991), 452-456. Available from http: //www.sci.wsu.edu/math/faculty/genz/homepage.
[3] Binoth, T., and Heinrich, G. An automized algorithm to compute infrared divergent multi-loop integrals. hep-ph/0004013 v2.
[4] Binoth, T., Heinrich, G., and Kauer, N. A numerical evaluation of the scalar hexagon integral in the physical region. hep-ph/0210023.
[5] DE DOncker, E., AND KaUgars, K. Error tolerances for iterated numerical integration, 2006. In preparation.
[6] de Doncker, E., Shimizu, Y., Fujimoto, J., and Yuasa, F. Computation of loop integrals using extrapolation. Computer Physics Communications 159 (2004), 145-156.
[7] de Doncker, E., Shimizu, Y., Fujimoto, J., Yuasa, F., Cucos, L., and VAN Voorst, J. Loop integration results using numerical extrapolation for a non-scalar integral. Nuclear Instuments and Methods in Physics Research Section A 539 (2004), 269273. hep-ph/0405098.
[8] Ferroglia, A., Passera, M., Passarino, G., and Uccirati, S. Two-loop vertices in quantum fi eld theory: Infrared convergent scalar confi gurations. hep-ph/0311186.
[9] Genz, A., and Malik, A. An imbedded family of multidimensional integration rules. SIAM J. Numer. Anal. 20 (1983), 580-588.
[10] Kurihara, Y., and Kaneko, T. Numerical contour integration for loop integrals, 2005. hep-ph/0503003 v1.
[11] Li, S. Online Support for Multivariate Integration. PhD dissertation, Western Michigan University, December 2005.
[12] Li, S., DE Doncker, E., And Kaugars, K. On the iterated numerical integration method. Springer Lecture Notes in Computer Science (LNCS) 3514 (2004), 123.
[13] Piessens, R., de Doncker, E., Überhuber, C. W., and Kahaner, D. K. QUADPACK, A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics. Springer-Verlag, 1983.
[14] Shanks, D. Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. 34 (1955), 1-42.
[15] Tarasov, O. V. An algorithm for small momentum expansion of feynman diagrams. hepph/9505277.
[16] Wynn, P. On a device for computing the em(sn) transformation. Mathematical Tables and Aids to Computing 10 (1956), 91-96.


[^0]:    ${ }^{1}$ elise@cs.wmich.edu
    ${ }^{2}$ yoshimitsu.shimizu@kek.jp
    ${ }^{3}$ \{junpei.fujimoto,fukuko.yuasa\} @ kek.jp

