Higgs + Jet angular and p_T distributions : MSSM versus SM

Oliver Brein

(Institute for Particle Physics Phenomenology, Durham, UK)

in collaboration with Wolfgang Hollik

e-mail: oliver.brein@durham.ac.uk

outline :

- Higgs + jet in the Standard Model
 - Higgs production @ the LHC
 - Higgs + jet
- Higgs + jet in the MSSM
 - differences to the SM
 - Feynman graphs
- MSSM results
 - total hadronic cross section @ LHC ($\sqrt{S}=14\,{\rm TeV})$
 - differential hadronic cross section

Quickstart

LHC/CMS 5 σ discovery contours for the MSSM Higgs bosons

– Higgs production @ the LHC

SM Higgs production @ LHC mainly via gluon fusion:

Detection ($m_H \approx 100 - 140 \text{GeV}$): mainly via the rare decay $H \rightarrow \gamma \gamma$.

 \rightarrow difficult ! huge background

Higgs + jet [R.K. Ellis et al. '87; Baur, Glover '89] (LO)
 [de Florian, Grazzini, Kunszt '99] (NLO QCD)

suggestion: study Higgs events with a high- p_T hadronic jet

advantage:

- * richer kinematical structure compared to inclusive Higgs production.
 - \rightarrow better S/B ratio
 - \rightarrow allows for refined cuts

disadvantage:

- * lower rate than inclusive Higgs production
- (*) NLO signal prediction has still sizable theoretical uncertainty ($\approx 20\%$)
- (*) background only partly known at NLO accuracy
- \rightarrow theoretical uncertainties larger than in the fully inclusive case (so far)

[Higgs + jet in the SM, Higgs + jet]

SM H+jet, partonic processes (mostly loop-induced):

recently simulated: $pp \to H + \text{jet}, H \to \gamma\gamma$ [Abdullin et al. '98 & '02] $pp \to H + \text{jet}, H \to \tau^+\tau^- \to l^+l^-p_T$ [Mellado et al. '05]

result: H + jet production (e.g. with $p_{T,jet} \ge 30 \text{ GeV}$, $|\eta_{jet}| \le 4.5$) is a promising alternative (supplement) to the inclusive SM Higgs production for $m_H \approx 100 - 140 \text{GeV}$. available codes:

- Higgsjet [de Florian, Grazzini, Kunszt '99] NLO QCD cross section for $pp \rightarrow H + jet$ also: soft gluon resummation [de Florian, Kulesza, Vogelsang '05]
- HqT [Bozzi, Catani, de Florian, Grazzini '03 & '06] p_T -distribution for $pp \rightarrow H + X$ at NLL + LO and NNLL + NLO QCD accuracy (large effects at small p_T resummed)
- MC@NLO [Frixione, Webber '02; Frixione, Nason, Webber '05] contains $pp \rightarrow H + X$ event generation at NLO QCD accuracy
- FEHiP [Anastasiou, Melnikov, Petriello '05] NNLO QCD differential cross section for $pp \rightarrow H + X$

but the LHC calls for further improvement of the theoretical predictions

• Higgs + jet in the MSSM

Motivation:

- * promising simulation results in the SM case
- * MSSM prediction for h^0 + jet not known yet
- * process loop-induced \rightarrow potentially large effects from virtual particles
- differences to the SM

partonic processes similar to the SM:

gluon fusion $gg \rightarrow h^0 g$,quark-gluon scattering $q(\bar{q})g \rightarrow h^0 q(\bar{q})$, $q\bar{q}$ annihilation $q\bar{q} \rightarrow h^0 g$

but: * different Higgs Yukawa-couplings

$$g_{q\bar{q}H}^{\mathsf{SM}} = \frac{e}{2sw} \frac{m_q}{m_W} \longrightarrow g_{q\bar{q}h}^{\mathsf{MSSM}} = \frac{e}{2sw} \frac{m_q}{m_W} f_q(\alpha,\beta),$$
$$f_{u_I}(\alpha,\beta) = \cos \alpha / \sin \beta$$
$$f_{d_I}(\alpha,\beta) = -\sin \alpha / \cos \beta$$

 \rightarrow change of overall rate

* additional superpartner-loops (even additional topologies) \rightarrow also angular distribution changed

[Higgs + jet in the MSSM]

- Feynman graphs [Field et al.'03; Langenegger et al. '06] (only quark loops)

gluon fusion, $gg \rightarrow h^0 g$ quark loops

superpartner loops

[Higgs + jet in the MSSM, Feynman graphs]

quark-gluon scattering, $qg \rightarrow h^0 q$ quark loops

[Higgs + jet in the MSSM, Feynman graphs]

quark-antiquark annihilation, $q\bar{q} \rightarrow h^0 g$ quark loops

 $b\overline{b}$ annihilation, $b\overline{b} \rightarrow h^0 g$

MSSM results

– total hadronic cross section @ LHC ($\sqrt{S}=14\,{\rm TeV})$

 $\sigma(pp \to h^0 + jet + X) =$

$$\int_{\tau_0}^1 d\tau \left(\frac{d\mathcal{L}_{gg}^{pp}}{d\tau} \,\widehat{\sigma}_{gg \to gh^0}(\widehat{s}) + \sum_q \frac{d\mathcal{L}_{qg}^{pp}}{d\tau} \,\widehat{\sigma}_{qg \to qh^0}(\widehat{s}) + \sum_q \frac{d\mathcal{L}_{q\bar{q}}^{pp}}{d\tau} \,\widehat{\sigma}_{q\bar{q} \to gh^0}(\widehat{s}) \right) \Big|_{\widehat{s}=\tau S}$$

with the parton luminosity

$$\frac{d\mathcal{L}_{nm}^{AB}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} \frac{1}{1+\delta_{nm}} \left[f_{n/A}(x) f_{m/B}(\frac{\tau}{x}) + f_{m/A}(x) f_{n/B}(\frac{\tau}{x}) \right].$$

The cuts $p_{T,jet} \ge 30 \text{ GeV}$ and $|\eta_{jet}| \le 4.5$ determine τ_0 and the angular integration limits.

The results shown are for the MSSM m_h^{max} benchmark scenario with common squark mass scale M_{SUSY} .

[partonic processes calculated using FeynArts/FormCalc, see : www.feynarts.de]

[MSSM results, total hadronic cross section]

(cuts: $p_{T,jet} \geq 30 \text{ GeV}$, $|\eta_{jet}| \leq 4.5$)

 m_A - and tan β -dependence

[MSSM results, total hadronic cross section]

M_{SUSY} -dependence

(cuts: $p_{T,jet} \geq 30 \text{ GeV}$, $|\eta_{jet}| \leq 4.5$)

[MSSM results, total hadronic cross section]

- differential hadronic cross section

$$\frac{d\sigma(S, p_T)}{dp_T} = \sum_{\{n,m\}} \int_{\tau_0}^1 d\tau \frac{d\mathcal{L}_{nm}^{AB}}{d\tau} \frac{d\hat{\sigma}_{nm}(\hat{s} = \tau S, p_T)}{dp_T}$$

$$\frac{d\sigma(S, y_{\text{jet}}^{\text{lab}})}{dy_{\text{jet}}^{\text{lab}}} = \sum_{\{n,m\}} \int_{\tau_0}^1 d\tau \int_{\tau}^1 \frac{dx}{x} \left\{ \frac{f_{n/A}(x)f_{m/B}(\frac{\tau}{x})}{1 + \delta_{nm}} \frac{d\hat{\sigma}_{nm}(\hat{s} = \tau S, \hat{y}_{\text{jet}})}{d\hat{y}_{\text{jet}}} \right|_{\hat{y}_{\text{jet}} = Y(y_{\text{jet}}^{\text{lab}}, \tau, x)}$$

$$+ \frac{f_{m/A}(x)f_{n/B}(\frac{\tau}{x})}{1 + \delta_{nm}} \frac{d\hat{\sigma}_{nm}(\hat{s} = \tau S, \hat{y}_{\text{jet}})}{d\hat{y}_{\text{jet}}} \Big|_{\hat{y}_{\text{jet}} = -Y(y_{\text{jet}}^{\text{lab}}, \tau, x)}$$

with

$$Y(y_{jet}^{lab}, \tau, x) = y_{jet}^{lab} + \tanh\left(\frac{\tau - x^2}{\tau + x^2}\right)$$

Also here, the cuts, $p_{T,jet} \ge 30 \text{ GeV}$, $|\eta_{jet}| \le 4.5$ have been applied.

Note that the pseudo-rapidity $\eta_{jet} = y_{jet}^{lab}$ for the massless outgoing parton.

[MSSM results, differential hadronic c. s.]

summary

- SM simulations show: Higgs + high- p_T jet production is a promising alternative to the inclusive production.
- LO MSSM prediction shows large effects due to virtual squarks. (processes loop-induced)
 - sizeable differences between SM and MSSM expectations can occur
 - angular distributions are changed at the $\approx 5\%$ level
- more precise predictions are needed in order to be useful for experimental analyses at the LHC.

FORTRAN code HJET to calculate the MSSM (and SM) cross sections,

m_A - and tan β -dependence

(cuts: $p_{T,jet} \geq 30 \text{ GeV}$, $|\eta_{jet}| \leq 4.5$)

[MSSM results, differential hadronic c. s.] $p_{T,jet}$ - and y_{jet} -dependence : (cuts: $p_{T,\text{jet}} \geq 30 \text{ GeV}$, $|\eta_{\text{jet}}| \leq 4.5$) -60 -40 -62 -45 δ [%] [%] -64 -50 -66 -55 \sim LHC -68 -60 gluophobic -70 -65 -72 -70 scenario 1.6 0.1 $d\sigma/dp_{T,jet}$ [pb/GeV] 1.4 0.01 1.2 $d\sigma/d\eta_{\rm jet}$ [pb] 1 0.001 0.8 1e-04 0.6 0.4 1e-05 0.2 1e-06 0 -2 0 2 100 1000 -4 4 $m_A = 400 \, \mathrm{GeV}$ $p_{T,jet} \; [GeV]$ $\eta_{\rm jet}$ $\tan\beta = 30$

