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Design strategy

- Natural extension of present KEKB

- the same boundary between KEKB and
Belle

- conventional flat beam scheme

. round-beam
. A baseline design of SuperKEKB IR
has been completed.

- Details are described in Lol (2004).



Machine parameters

Present KEKB | KEKB Design Super KEKB

LER/HER LER/HER LER/HER
B, [M] 0.59/0.56 0.33 0.2
B,* [mm] 6.5/5.9 10 3
g, [nm] 18/24 18 9
g, [mm] ~8/~7 5 3
¢, [mrad] 11 11 15
lbeam [Al 1.7/1.35 2.6/1.1 10.4/4.4
L [1034/cm?/s] 1.63 1 82.5




Issues of IR Design

Issues

Causes

Measures

Dynamic aperture

Lower beta’s at IP.

Place QCS magnets.
closer to IP.
Damping ring.

Physical aperture

Lower beta’s at IP.

Damping ring.
Larger crossing angle.
(22mrad -> 30mrad)

Heating of IR
components

Higher beam currents.
Higher power of SR from QCS
magnets.

Shorter bunch length (HOM).

Under study.

Detector beam
background

Higher power and critical
energy of SR from QCS
magnets.

Higher beam currents.
QCS closer to the IP.
Higher Luminosity.

Under study by Belle
Group.




Place QCS magnets closer to IP

SuperKEKB
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The boundary between KEKB and Belle is the same.
ESL and ESR will be divided into two parts (to reduce E.M. force).
QCSL (QCSR) will be overlaid with (the one part of ) ESL(ESR).



IR magnet layout
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Nox
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. ocal correction scheme also
in HER?

- HER local chromaticity correction scheme
is not compatible with installation of crab
cavities in Tsukuba section.

- |If we want to install crab cavities in
Tsukuba, we can not adopt the local
correction scheme in HER.

- We need to wait for the results of the
experiment with the crab cavities in
Nikko section next year.



New Issues

.- Horizontal tune very close to half-
Integer

- SR fan

- Physical aperture in IR

.- ldea of waist control
- Traveling focus
- Crab waist



Beam-beam simulation
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Ux' [mrad]

Estimation of dynamic effects
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Input parameters

Ewo = 0.152
v, = variable(0.503)
g, =24 nm
B, =20 cm

Bx 8x OV
[cm] [nm] [mrad]
SAD 2.0 0.125 2.5
B-B 2.30 0.128 2.49
lo,, o
B-8 418 | 9x0.209 | 3 x2.23
36, , Oy




Fan of SR with dynamic effects

%, (3 o, 30, is taken into account.

QClR-cryostat-bore

£,=0.1,v, =510 -
OClL-cryostat-bore L
— 150
QCSR-cryostat-bore 100
QCSL-cryostat-bore - 50
—[I{TJlm]
—=50
—=100
central beam orbit -

— === beam envelop

-------- SOR from the beam at the IP or arc sides of each QCS
deviation of SOR from the central beam

v, =.510 -> g, ’~1.4mrad
v, =.503 -> ¢,’~2.5mrad



Power of SR from QCS Magnets

QCSR QCSL
agnet fengt 0.33 0.42
AX [mm] 34.5 29.1

G [T/m] 37.2 35.4

B [T] 1.28 1.03
E, [GeV] 8.0 3.5

| [A] 4.1 9.4

P [kW] 179 (27) 64.6 (10)

(): present KEKB Design



o, In IR with dynamic effects

LER IR
B, = 4.78cm, g, = 98.7nm (B, ,= 40cm, &, = 12nm )(red)
B, = 4.45cm, g, = 217nm (B, o= 20cm, ¢,, = 24nm )(blue)




4.78cm, g, = 98.7nm (B, ,= 40cm, g,, = 12nm )(red)
4.45cm, g, = 217nm (B, ;= 20cm, g,, = 24nm )(blue)

HER IR
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Parameters of IR quad (Lol)

QCILE QC2LE QCIRE QC2RE QC2LP QC2RP

Field gradient T/m 15.5 3.4 12.0 8.8 6.7 3.4
Pole length m 0.64 2.0 0.75 0.8 0.6 1.0
bore radius mm 25 50 48 90 80 40

Current AT 3920 3400 11050 28400 17100 1980
coil turns /pole 3 8 3 16 15 3
Current density of
Septum conductor A /mm? 30 10 70 24 31 15

Field in the area for

couter-circulating beam  Gauss 0~-0.65 0~-0.4 0~-1.1 0~-0.35 0~-0.85 0~-0.35

Table 3.3: Parameters of special quadrupole magnets

v

Gy (Mm)

b /o,

8 21 10 22 12 16

v

3.1 2.4 4.8 4.1 6.7 2.5




Waist control

- To avoid effects of “Hourglass” effect

- Traveling focus

- Sextupole magnets + crab cavities
- RF quadruple

- Energy difference (RF cavity) + chromatic effect
- Crab waist

- Sextuple magnets + crossing angle + small x size

Kick by sextuple
1
H, =ES(X3 —3xy2)

dp, M,
ds

%
dp, _ My _ leone
ds éxz_ 28(X2 y2)

= SXY

A

vertical focus depending on X

A

harmful or not?



~— Traveling lon Focus Q& Brinkmann, 1995. general idea

SRF deflectors (the same as for crab crossing) also can be used for
arrangement of Traveling Focus (at /i >> [¢ ), in cooperation with sextupole
non-linearity introduced in the final focusing magnets

Traveling Focus allows one to decrease Ni or use bunches of a larger &i

<
€
[ilt by SRF fl ] fe 4. 8 s
@ dx .
T e S ==
$ C “ ¢ /B i << if' AJ over the aperture:
dr 1 _ A
Matching condition: —— — — Dhence, —=— AF, = 2
ds 2 dx 2a Ease to satisfy

1
Al o "; (over the bunch)

The feasibility condition:
vz

AF el =
2F

S

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy



Crab waist (SuperB workshop @ LNF)

Smaller area of interaction

Basic scheme -> effectively short bunch

*Crossing angle -> smaller beam is needed to keep &, high
esmall x size Smaller beam-beam tuneshift (Hor.)
ecrab waist Cancellation of main and long range force

«Still crab waist is needed.
«Shift of waist points
eHarmful effect of crossing angle is partially canceled.

et original waist e

crabbed waist



One turn map with sextupoles

eKick by sextuple (vertical)

S_(l oj k(s
Clax 1) ATKE)

S :( : O] A =K, (S,)
2 AZX 1 2 2\%2
eOne turn map (IP - > IP)
Original :
M, =M;M;M,
With sextupole kick :

M = M,S;M;S,M, = (M,$,M;* \M;M M, )(M;'S,M, )
We assume (M,'S,M, )= (MlslMl‘l)_l =(MS'M )
M,=M" andS,=S" (A, =-A)

Then,
M = I\/Ilslvlolvll_s1 MlS = MlslMl_l



ePhase advance (S- >IP) (vertical) :

_T
=3
eTransformation of S,
7
S VBB
M, = . y
B , S1 o* O
ﬁy ﬁyO M3
-1 1 - 5118;0)(31
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ePhase advance (S- >IP) (vertical)

W=7
eTransformation of S,
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SX strength and phase advance (hor.)
*Crab waist

*Traveling focus with crab

o
/%227

ePhase advance (S,- > IP) (hor.): w,,

Wiy = Nz

oCrab angle at S, : ¢
7 same ePhase advance (S;- > IP) (hor.):
¢S = ﬁ* ¢c Wiy = Nz
T _ eHorizontal Position at S, : X,

eRequired shift of waist -

AS :% Xg1 = I'BB—X;X*

Zgs = X, eRequired shift of waist

X . X .

ﬁ: ) By, AS= 24, ) B %sy
eRequired K2 value of S, eRequired K2 value of S;

K2(S1) = A = 1 1 22 < > K2(SD)=A = 1 1 i

2¢. BB\ B

‘same

2¢. BB\ B



Issues

. Effectiveness of the traveling focus and
crab waist schemes at KEKB or SuperKEKB

- Beam-Beam simulation

- Geometrical luminosity with traveling focus
- Lattice design

- Studies under way

. Effects of the other nonlinear terms of SX
(Sx3)

- To be studied
- How to localize SX nonlinearity in the
presence of the beam-beam kick

- To be studied



Effectiveness of waist control on
KEKB or SuperKEKB performance

. Results of beam-beam simulations

- Traveling focus

- No remarkable improvement in the
luminosity (K. Ohmi, Y. Ohnishi)

- The beam lifetime may be improved.

- Crab waist

- With the present KEKB parameters, a
remarkable improvement is expected.

- At SuperKEKB, a higher luminosity would
be obtained, if very small B, and B, are
realized.



Effect of crab waist at KEKB

- H=25 x p,*.
present KEKB
0.2 I I | | |
K. Ohmi
0.15 _
0 mrad
< 0.1 — =
11 mrad & K2=25
0.05 11 mrad )
O I I I I I

O 2000 4000 6000 8000 10000 12000

turn
Without crab cavities, a similar luminosity improvement

IS expected with the crab walist.



Super KEKB (k. ohmi, F. Tawada)
SuperKEKB Crab waist

X 9.00E-09 6.00E-09 6.00E-09 6.00E-09 6.00E-09
gy 4.50E-11 6.00E-11 6.00E-11 6.00E-11 6.00E-11
Bx (mm) 200 100 50 100 50
By (mm) 3 1 0.5 1 0.5
oz (mm) 3 6 6 4 4
VS 0.025 0.01 0.01 0.01 0.01
ne 5.50E+10 5.50E+10 5.50E+10 3.50E+10 3.50E+10
np 1.26E+11 1.27E+11 1.27E+11 8.00E+10 8.00E+10
¢/2 (mrad) 0 15 15 15 15
EX 0.397 0.0418 0.022 0.0547 0.0298
gy 0.794->0.33 0.1985 0.179 0.178 0.154
Lum (W.S.) 8E+35 6.70E+35 1.00E+36 3.95E+35 4.80E+35
Lum (S.S.) 8.25E35 | 4.77E35 9E35(v) 3.94E35 4.27E35

T

SuperKEKB design

T

SuperKEKB alternative




Study of crab waist optics

- Estimation of sextupole strength

- Optics design (under way)

- Optics requirements

- Phase advance S, -> IP

- N=x (horizontal)
- (2N+1)/2 = (vertical)

- High B, and B, at S;

- §,->S,: connected with | or -l transformer
- Dynamic aperture with crab waist

- To be studied



Estimation of SX strength

KEKB (LER) | SuperKEKB
o [mrad] 11 15
3, [mm] 6.5 3
3,°! [m] 100 100
3, [m] 0.59 0.2
3,>" [m] 5 5
K2(S1) 27.9 22.2
2 BL

Bp




LER
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KEKB (LER)
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Modified optics (LER) example
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Possible choice of S, location
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KEKB (HER)
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Summary

- A baseline design of SuperKEKB IR has
been completed (Lol).

- Dynamic aperture of HER is still marginal
and more studies are needed.

.- The present design luminosity of 8.3 x
103> is obtained with a combination of
head-on collision and horizontal tune
of .503.

- With this tune, the physical aperture
around IP and SR fan of QCS are serious
and without solving these problem, the
design luminosity would not be realized.



Summary [cont”d]

- As new ideas, we have considered two
schemes of “traveling focus” and “crab
waist’.

- The beam-beam simulation showed that a
luminosity gain by the traveling focus is
small, although the beam lifetime may be
improved.

. On the other hand, the luminosity gain
from the crab waist seems big even with
the present KEKB parameters.

- We are studying the optics of the crab
waist and are considering a beam test of
this scheme.



Comments on crab waist with
very small beta”s and emittance

- K. Ohmi’s simulation showed that a higher
luminosity is obtained by using the crab waist
with very small beta’s and conventional tunes.

- However, | haven’t considered this possibility
seriously, since the dynamic (physical) aperture
problem seemed serious.

- M. Biagini’s talk showed that the dynamic
aperture issue is within a range of study if
combined with very small emittance.

- More studies on dynamics aperture issue are needed.
- Optimization of various parameters

- Injection scheme
- Effects of machine errors (and beam-beam)

- We will consider the crab waist scheme as an
alternative option of SuperkKEKB.



Dynamic aperture for “ideal”
lattice with FF (3 Km, 7 Gg\{), .

0.92 -
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.,-~ g
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Coordinate space Tune space

Frequency map analysis, sextupoles tuned for O chromaticity



SBF 4 GeV SBF 7 GeV
C (m) 3251. 3251.
B, (T) 1.4 1.4
Lyeng(m) 5.6 10.6
N. bends 96 96
Bpeng (T) 0.155 0.144
Uo (MeV/turn) 4.4 6.4
N. wigg. cells 8 4
1, (Ms) 19.8 24.
1, (Ms) 10. 12.
g, (nm) 0.38 0.565
o 1.1x103 1.32x10°3
lheam (A) 2.5 1.4
Pheam(MW) 11. 0.

M. Biagini

cm o=0.85x103

otal Wall Power (60% transfer eff.): 32 MW



SuperKEKB Budget Profile

Oku-yen ~ 0.89M
y $ Total Cost: 465.8 Oku-yen
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Spare slides



Fan of SR

. Consideration of the particle distribution
in the phase space

. Effects of dynamic-p and dynamic-
emittance

- These effects are very large with the
horizontal tune very close to the half integer.

- We took 9¢, (3 o,, 30,/) into consideration.



Enlargement of SR fan due to dynamic effects

without dynamic effects

with dynamic effects

Source point QCSRE'(?F;C side) QCSLEL(;F;C side) QCSRE'(EAF;c side) QCSLEL(I?F;C side)
Observation point Exit of QC1RE Exit of QC1LE Exit of QC1RE Exit of QC1LE
g,[nm]
v (UB) [/m]
Distance from a
source point [m] 2.87 1.94 2.87 1.94
é)c()[g] " 5.2 5.5 5.2 5.5
é);[mg'c]s 5.1 5.4 17.7 18.3

X! X’
e 10.3 10.9 22.9 23.8

£,=0.1, v, = 510
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Rad Bhabha BG sim. f
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Super-KEKB (current) design
Average Vacuum

5x10°7 Pa

KLM Barrel
KLM EndCap
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Average Vacu
2.5x10" Pa
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Summary

Backscattering of QCS-SR Is not serious, but
strongly depends on IR chamber configuration

Vacuum level is very important
» Original design (5x10-" Pa) is serious - BGx25
» W/ further effort (2.5x10-7 Pa) - BGx18 L/-3O%

Increasing of Touschek origin BG

» Smaller bunch size & higher bunch currents are reason
» Might be reduced by further study

Radiative Bhabha origin BG can be suppressed

Beampipe radius 1.5cm => 1cm
» Further simulation study of shower particles into SVD is important



From KEKB to SuperKEKB
Synchrotron Radiation (SR) (2)

KEKB

The exact path of the SR
from QCS and its spread
were not strictly taken into
account in the first design.

This caused a high
temperature at unexpected
portions of a vacuum
chamber.

- Deformation of vacuum
chamber

- Motion of magnets.

SuperKEKB

The design of QC magnets in
the Lol looks trying to give a

sufficient clearance for the SR
down to QC2.

The design of the beam duct
layout also tried to avoid the
SR.

However, the design should be
checked against the fact that
the two beams and the SR
don’t lie in the same plane.



From KEKB to SuperKEKB
Detector Background

KEKB SuperKEKB

- Back scattering of the SR - Chamber material: Cu
from QCS by a HER Al (cooling, shielding, small
begm duct became a back scatter of SR)
noise source. (Cu has a . Beam ducts avoid the SR
smaller cross section of down to 8m (HER
the back scattering than downstream) and 5m (LER
that of Al.) downstream) from IP.
Shields against the . Shield should be taken into
detector background consideration from the first
should have been design.

incorporated from the
first design.



From KEKB to SuperKEKB
Higher Order Mode (HOM) (1)

KEKB SuperKEKB

- The HOM power turned - Extrapolation from KEKB
into heat in IR is, in the gives as a heat by HOM
unit of the loss factor, about TO0OkW x(bunch
around 474 V/nC. length factor).
(Estimated from the . Is the compact HOM
temperature rise of absorber possible?
cooling water) _ - The cooling for HOM will
Heat up of the bellows will be a big problem.
be unacceptable level in

The comb type bellows is

Super KEKB expected to be durable.



QCS offset
QCSR: 1/2 (LER/HER)
QCSL: 2/1 (LER/HER)

QC2LE
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