SuperB Damping Rings

M. Biagini, LNF-INFN
P. Raimondi, SLAC/INFN
A. Wolski, Cockroft Institute, UK
SuperB III Workshop, SLAC, 14-16 June 2006

SuperB Rings

- SuperB rings have same characteristics as the LC Damping Rings, that is:
 - Short damping times (τ_s < 10 sec)
 - Small emittance (ε_x < 1 nm)
 - Low emittance coupling (0.25 %)

 Natural candidate is OCS lattice from ILCDR Baseline Design

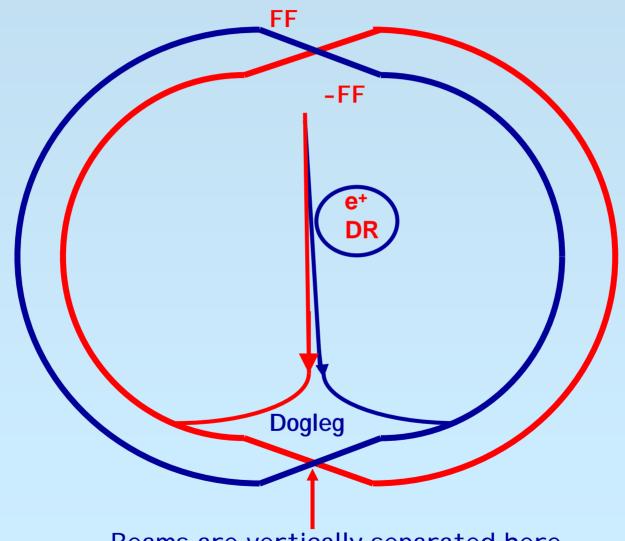
OCS lattice

- 10-fold symmetry with 10 long straight sections
- 8 straight sections contain wigglers and RF cavities, the other 2 can accommodate tune-adjustment sections and injection
- Arc cell is a TME (Theoretical Minimum Emittance), 40 m long, with 72 dipoles 5.6 m long with low (0.2 T) field
- Wigglers are SC, 1.6 T field, 10.4 m long in each section

ILCDR Parameters

	Table 2.1: Para	ameters of			ping ring r	eference lat	ttices.		
	Lattice	PPA [12]	OTW	OCS [26]	BRU [82]	MCH [82]	DAS [12]	TESLA [72]	
	Circumference [m]	2824	3223	6114	6333	15935	17014	17000	
П	Energy [GeV]	5.0	5.0	5.066	3.74	5.0	5.0	5.0	
П	Harmonic number	4700	7678	13256	13732	34550	28377	28200	
П	Arc cell type	PI	TME	TME	FODO	FODO	PI	TME	
П	Horizontal tune	47.810	45.164	50.840	65.783	75.783	83.730	76.310	
П	Vertical tune	47.680	24.157	40.800	66.413	76.413	83.650	41.180	
П	Natural chromaticity (x, y)	-63,-60	-88,-74	-65,-53	-79,-87	-90,-95	105,-105	-126,-60	
П	Momentum compaction $[10^{-4}]$	2.83	3.62	1.00	11.9	4.09	1.14	1.22	
П	Energy loss/turn [MeV]	4.70	8.85	9.33	6.19	19.8	21.0	20.3	
П	Transverse damping time [ms]	20.0	12.1	22.2	25.5	26.9	27.0	1750	
П	Longitudinal damping time [ms]	10.0	6.07	11.1	12.8	13.4	13.5	1750	
П	Natural emittance [nm]	0.433	0.388	0.559	0.377	0.675	0.612	1500	
П	Norm. natural emittance $[\mu m]$	4.24	3.80	5.54	2.76	6.60	5.99	1500	
П	RF voltage [MV]	17.76	21.78	19.27	23.16	53.70	48.17	1250	
П	RF frequency [MHz]	500	714	650	650	650	500	1200	
П	Synchrotron tune	0.0269	0.0418	0.0337	0.120	0.150	0.0668	1000	
П	Synchronous phase [deg]	164	156	151	164	158	154	1000	OCS
П	RF acceptance [%]	3.2	2.1	2.0	1.3	1.5	2.8	750	
П	Natural bunch length [mm]	6.00	6.00	6.00	9.00	9.00	6.00	1 00	
П	Natural energy spread [10 ⁻³]	1.27	1.36	1.29	0.973	1.30	1.30	500	
П	Particles/bunch [10 ¹⁰]	2.4	2.2	2.0	2.0	2.0	2.0	300	
П	Peak current [A]	76.7	70.0	63.9	42.6	42.6	63.9	250	
П	Bunch spacing $[\lambda_{RF}]$	2	3	4	4	10	10	200	
П	Bunch spacing [ns]	4.000	4.202	6.154	6.154	15.38	20.00	0	
П	Bunches per train	2350	2559	47	36	18	2820		-500 O 500 1000
П	Gaps per train	0	0	8.25	8	4	0		
П	Number of bunch trains	1	1	60	78	157	1	1	
П	Average current [mA]	959	839	443	426	170	159	159	
П	Mean horizontal beta function [m]	13.1	58.0	25.6	57.6	109	106	120	
П	Mean vertical beta function [m]	12.5	63.8	31.0	55.4	108	106	121	
	Synch. radn. integral I ₁ [m]	0.7986	1.158	0.9727	6.365	6.523	1.940	2.071	
	Synch. radn. integral I_2 [m ⁻¹]	0.5341	1.006	0.8087	2.248	2.248	2.390	2.314	
	Synch. radn. integral I_3 [m ⁻²]	0.04699	0.1016	0.09992	0.2073	0.2073	0.2190	0.2113	
	Synch. radn. integral I ₄ [10 ⁻⁴ m ⁻¹]	0.3276	1.212	1.488	3.675	3.774	1.914	2.150	
l	Synch. radn. integral I_5 [10^{-5} m $^{-1}$]	0.6342	1.104	1.424	3.043	3.112	3.883	3.206	

SuperB Rings Parameters

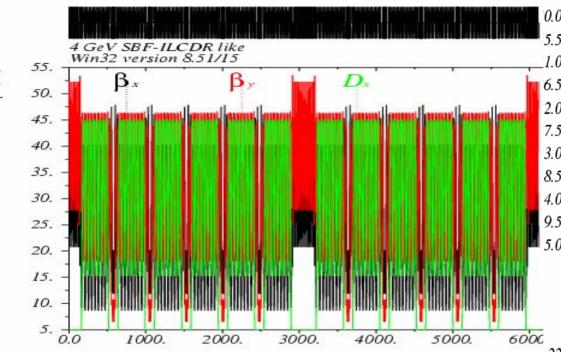

TABLE V: Preliminary Super Flavour Factory collision parameters

•				
	1st LNF Workshop	2 nd LNF Workshop		
	Best Working Point	Best Working Point		
$\sigma_x^* (\mu m)$	30 (1.0 σ_x betatron)	2.67		
$\eta_x \text{ (mm)}$	1.5 LER/ -1.5 HER	0.0		
σ_y^* (nm)	12.6	12.6		
β_x^* (mm)	1.25	8.9		
β_y^* (mm)	0.080	0.080		
σ_z^* (mm)	0.100	6.0		
σ_E^*	$2. \times 10^{-2}$	10^{-3}		
σ_E Lum.	10-3	0.7×10^{-3}		
ϵ_x (nm)	0.8	0.8		
ϵ_y (nm)	0.002	0.002		
$\epsilon_z \; (\mu \text{m})$	2.0	4.0		
$\theta_x \text{ (mrad)}$	Optional	2*20		
$\sigma_z DR \text{ (mm)}$	4.0	6.0		
$\sigma_E DR$	$0.5 imes 10^{-3}$	10^{-3}		
$N_{\rm pa.rt}(10^{10})$	7.0	2.0		
$N_{\mathtt{bunches}}$	12000	12000		
I(A)	6.7	1.9		
C _{DR} (km)	6.0	6.0		
$\tau_{x,y} \text{ (ms)}$	10	20		
Turns between	50	1		
collisions				
f_{coll} (MHz)	12.0	650		
$\mathcal{L}_{ ext{singleturn}}(10^{36})$	1.5	1.2		
$\mathcal{L}_{ ext{multiturn}}(10^{36})$	1.1	1.0		

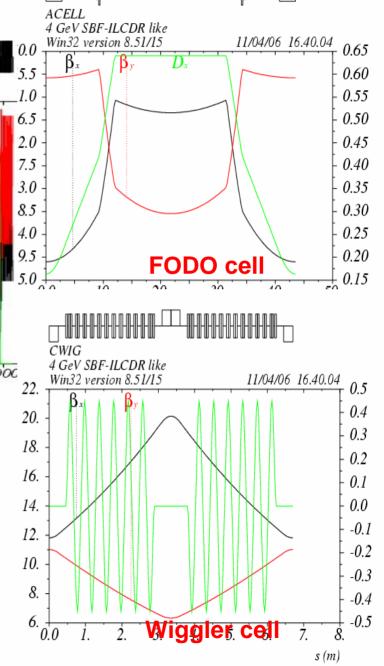
From document presented at CERN Strategy Group and INFN Roadmap:

www.pi.infn.it/SuperB/
(March 2006)

SuperB Schematic Layout

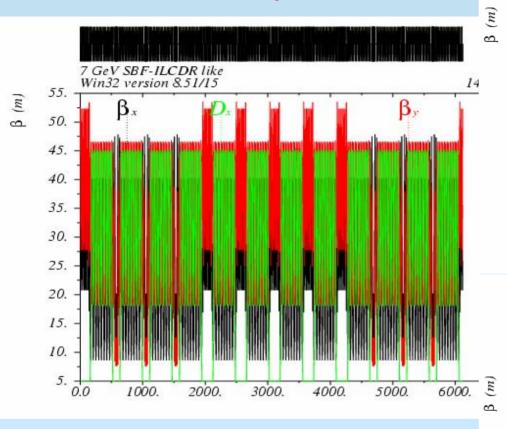


Beams are vertically separated here

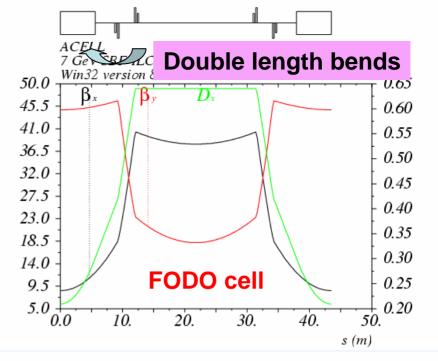

- Rings have asymmetric energies of 4 and 7 GeV
- OCS lattice was scaled from 5 GeV to 4 and 7
- 6.1 Km, 3.2 Km and 2.2 Km long rings were studied
- Emittances and damping times were kept similar for each configuration
- Lattice symmetry was respected
- Fewer and lower field wigglers used (pm?)
- Longer dipoles were used, when needed
- Preliminary Final Focus (A. Seryi) included

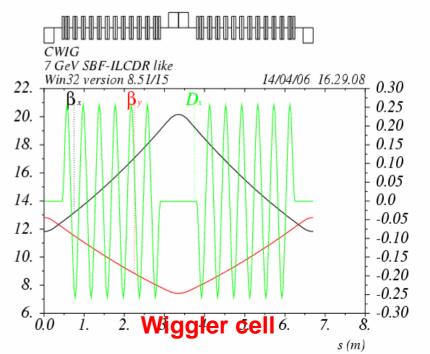
6.1 Km lattice

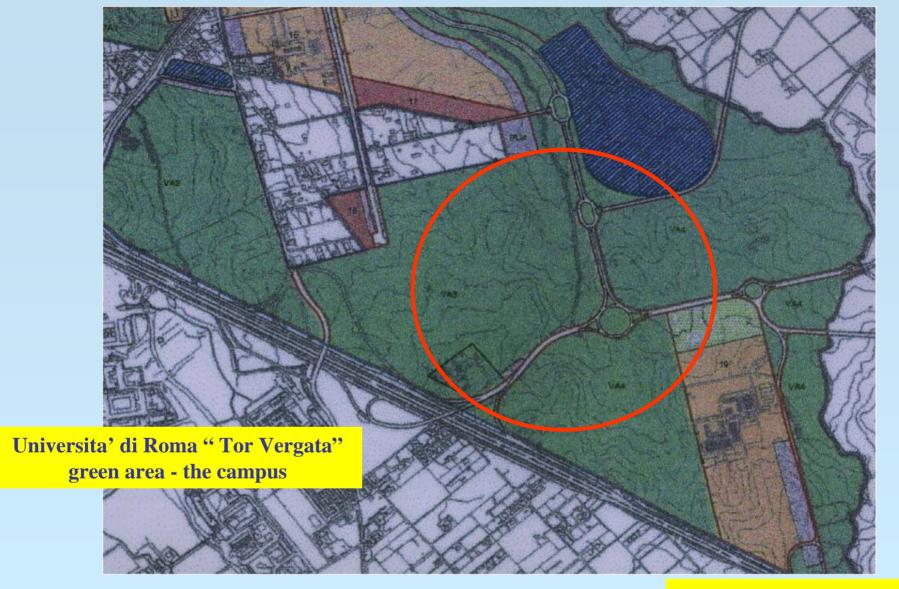
- OCS lattice: 6.1 Km ILC Damping Rings,
 8 wiggler sections
- 4 GeV: same wiggler sections (8) and field, same bend length
- 7 GeV: same wiggler field, less wiggler sections (6), double bend length



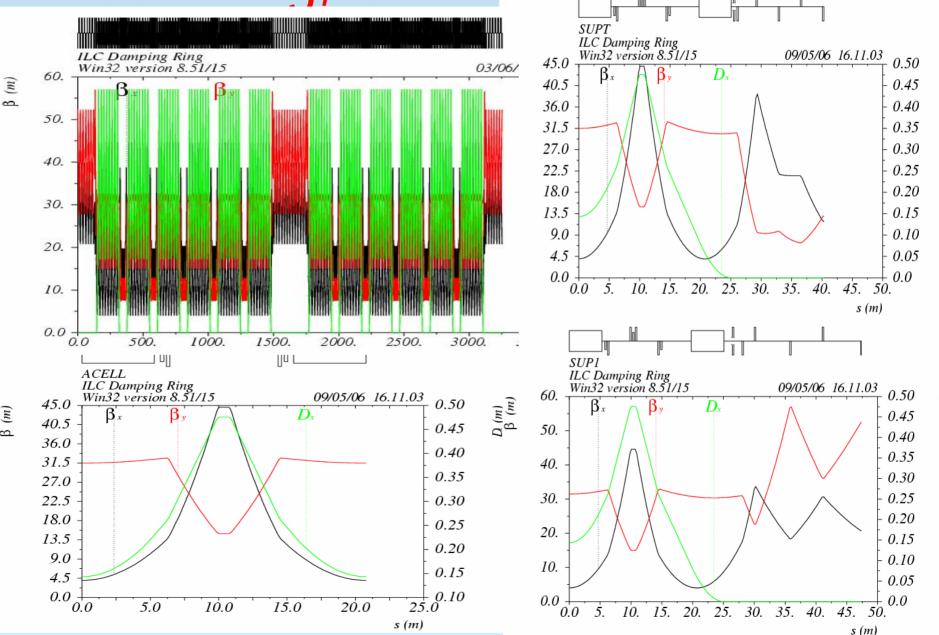
135°/90° FODO cells 8 wiggler cells, 1.6 T



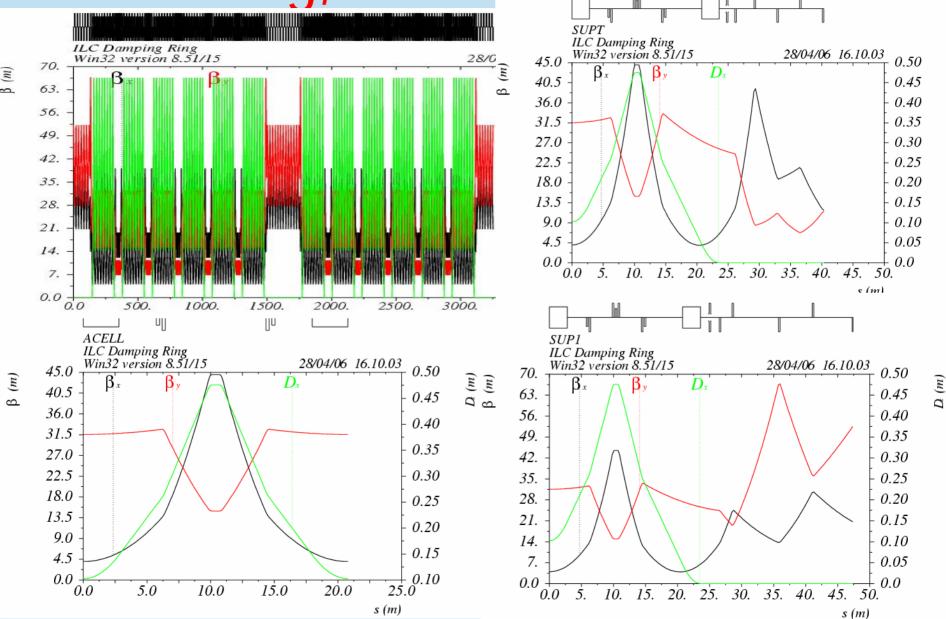

 $D_{k}(m)$


7 GeV, 6.1 Km

135°/90° FODO cells 6 wiggler cells, 1.6 T

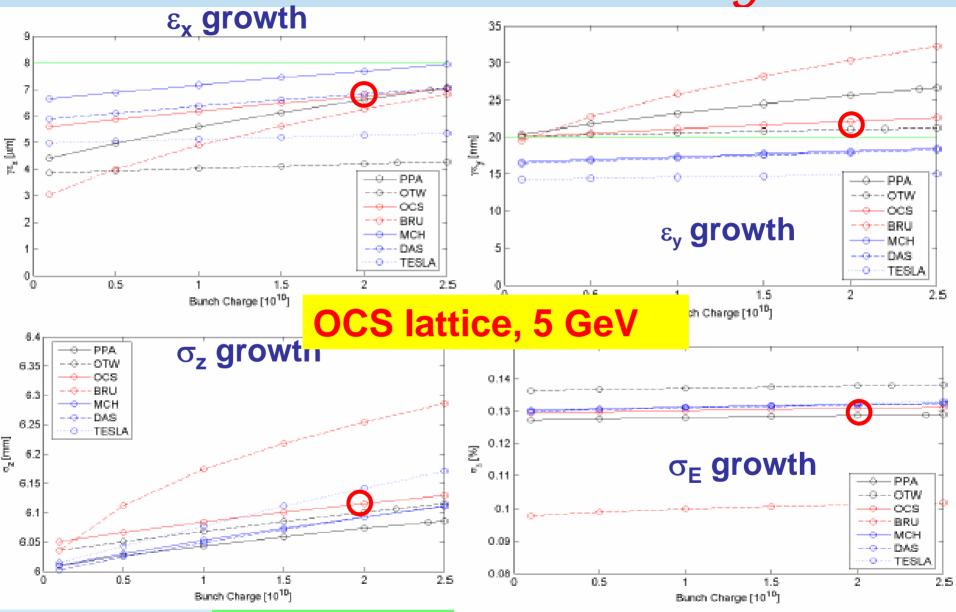


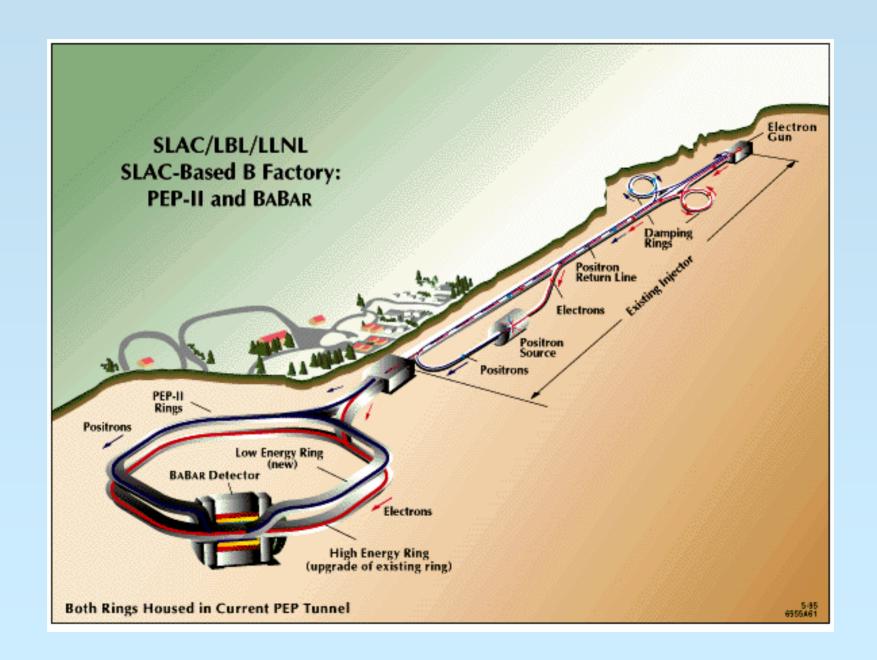
Frascati INFN & ENEA Laboratories


3.2 Km Rings

- The OCS lattice has many free drifts and a relatively low number of quadrupoles and bends → quite easy to shorten the ring
- Quadrupole strengths and beta peaks are higher though
- Arc needs higher dispersion for better chromaticity correction → in progress

7 GeV ring, 3 Km

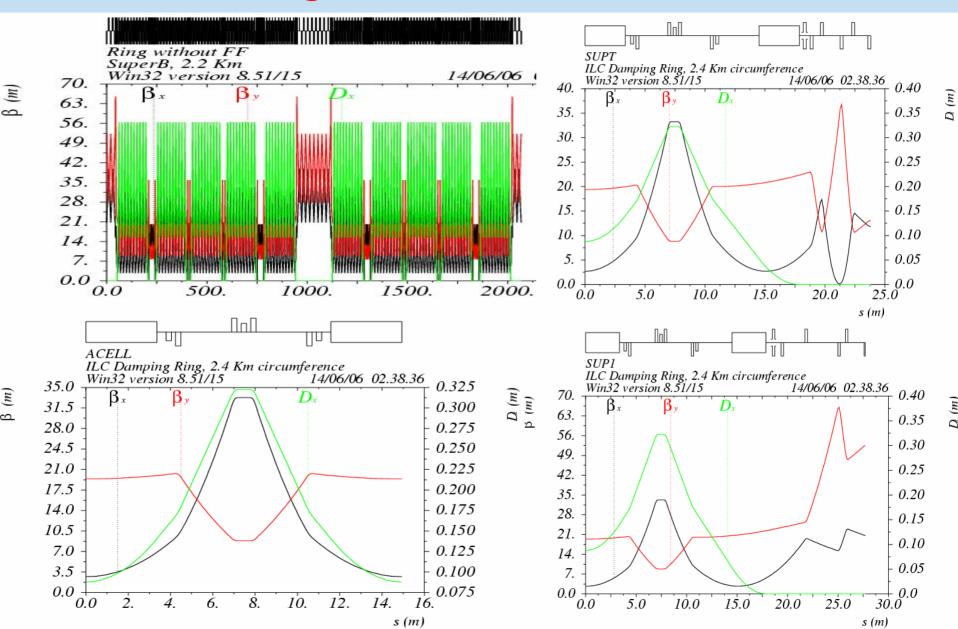

4 GeV ring, 3 Km


Possible issues of shorter rings

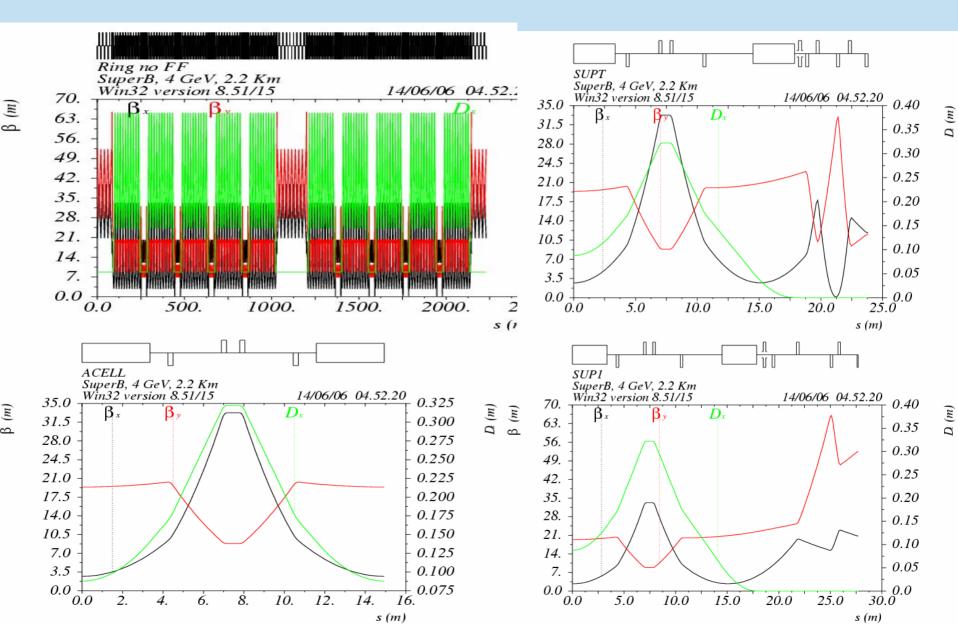
- Same as I LCDR, that is:
 - Dynamic aperture
 - HER e-cloud instability → new electrodes ?
 - LER Intra Beam Scattering
 - Fast Ion Instability → gaps in train

Intra Beam Scattering

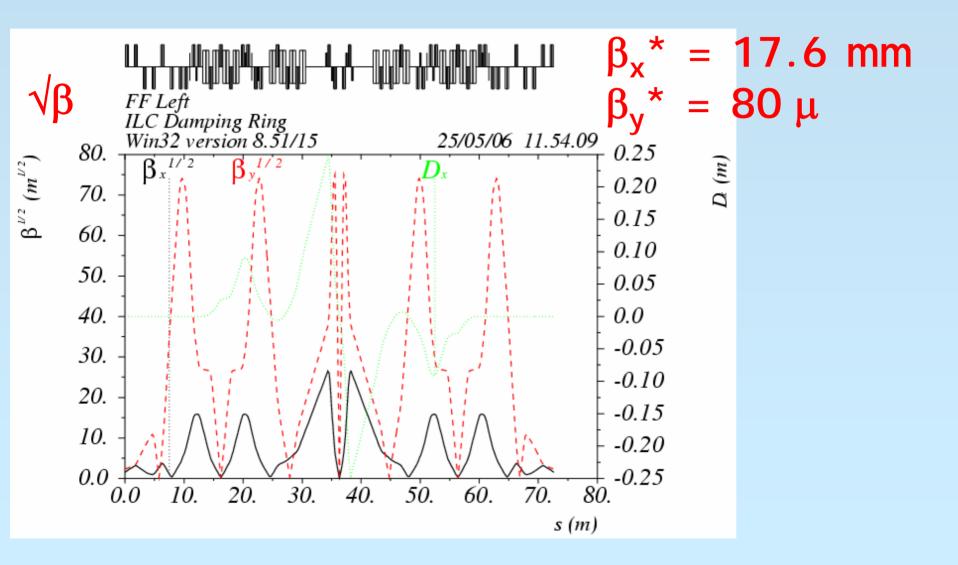
DR Baseline Configuration Document, Feb. 06

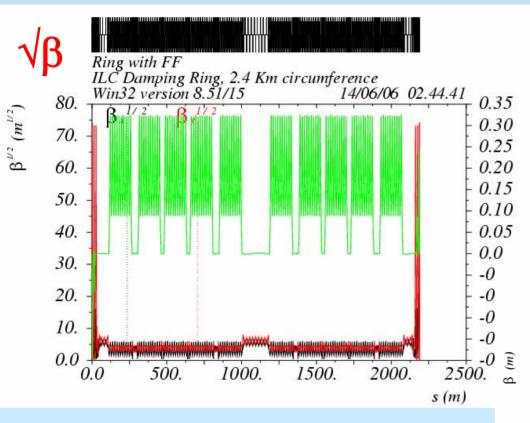


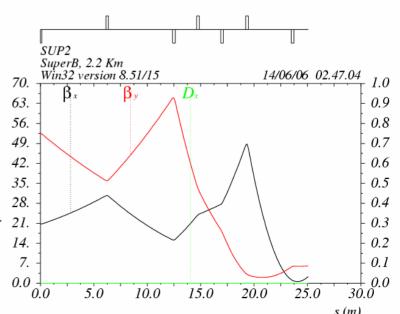
2.2 Km Rings

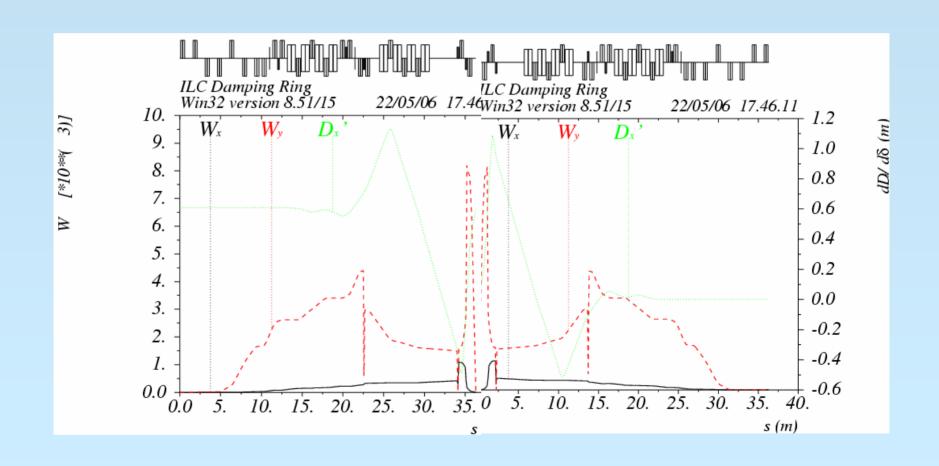

- A first solution was found by:
 - Shortening drifts in dispersion suppressors
 - Eliminating some of the FODO cells
 - Shortening wiggler-free sections in 7 GeV ring
 - Shortening long drift sections in 4 GeV

Preliminary, can be easily improved

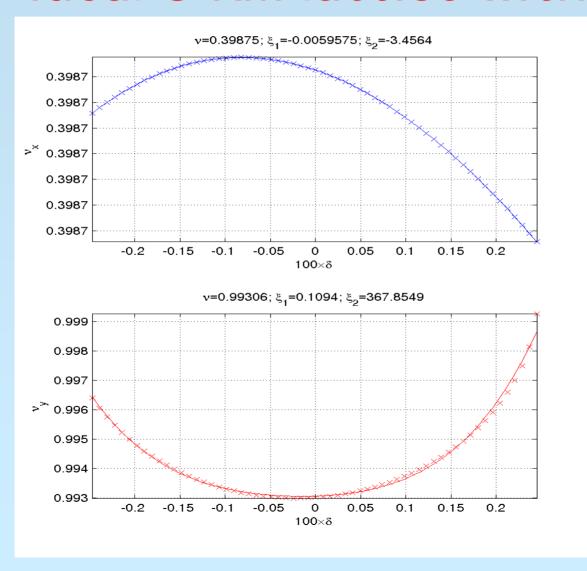

7 GeV ring, 2.2 Km


4 GeV ring, 2.2 Km


A. Seryi Final Focus (March 06)


2.2 Km ring with FF

Chromatic functions W_x , W_y and 2^{nd} order dispersion in FF

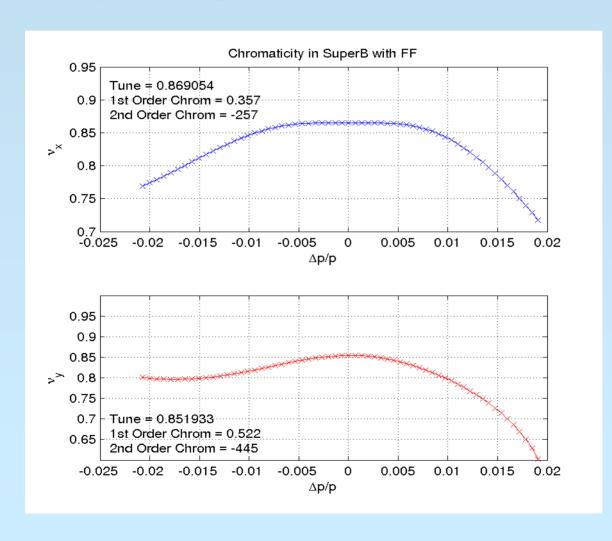

Comparison of Ring Parameters

	4 GeV			7 GeV				
C (m)	6114.	3251.	2230.	6114.	3251.	2230.		
B _w (T)	1.6	1.4	1.4	1.6	1.4	1.4		
L _{bend} (m)	5.6	5.6	6.72	11.2	10.6	6.72		
N. bends	96	96	100	96	96	100		
B _{bend} (T)	0.078	0.155	0.125	0.136	0.144	0.218		
Uo (MeV/turn)	5.7	4.4	3.5	10.7	6.4	7.		
N. wigg. cells	8	8	8	6	4	4		
τ_x (ms)	28.8	19.8	17.	26.	24.	14.5		
τ_s (ms)	14.4	10.	8.6	13	12.	7.25		
ε _x (nm)	0.5	0.38	0.37	0.5	0.565	0.64		
σ_{E}	1.1x10 ⁻³	1.1x10 ⁻³	10-3	1.3x10 ⁻³	1.32x10 ⁻³	1.35x10 ⁻³		
I _{beam} (A)	2.5	2.5	2.5	1.4	1.4	1.4		
P _{beam} (MW)	14.	11.	8.8	15.	9.	9.8		
P _{wall} (MW) (50% eff)	43.5	30	28	-	-	-		

Dynamic aperture

- Preliminary dynamic aperture calculations for the 3 Km ring @ 7 GeV with FF have been performed by A. Wolski
- Studied tune behavior vs energy deviation
- First dynamic aperture & frequency map analysis
- Tunes not optimized → needs work
- Sextupoles not optimized → needs work

Chromaticity vs energy deviation for ideal 3 Km lattice without FF



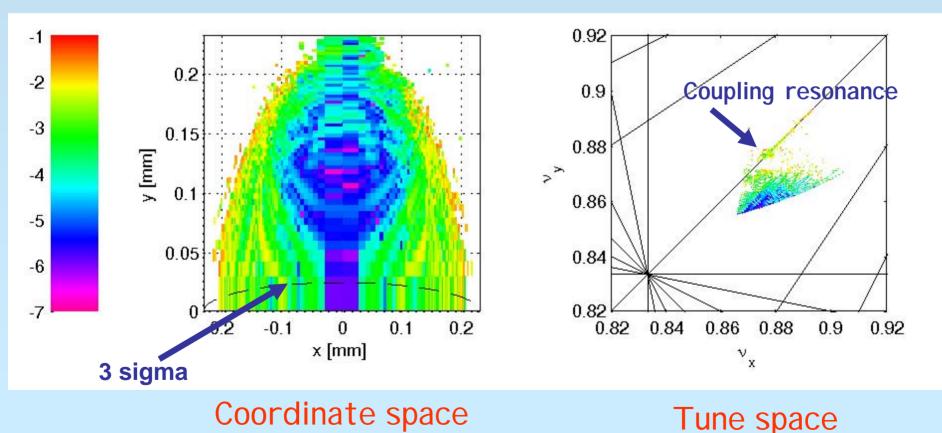
A. Wolski

x tune

y tune

Chromaticity vs energy deviation for ideal 3 Km lattice with FF

A. Wolski


x tune

y tune

Energy acceptance between 1% and 2%

Dynamic aperture for "ideal" lattice with FF (3 Km, 7 GeV)

A. Wolski

Frequency map analysis, sextupoles tuned for 0 chromaticity

Conclusions

- 3 rings with asymmetric energies have been studied by scaling the ILCDR OCS lattice
- Final Focus has been inserted in all
- They all look reasonable
- A lot of work is still needed:
 - Optimization of arc cell
 - Dynamic aperture optimization
 - Dependence of vertical emittance from errors
 - Collective effects
- Beam instabilities will be different due to different energies and need to be studied especially for the LER
- There is full synergy with LCDR as requested