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Perturbative and non-perturbative QCD

C.J. Maxwell
Institute for Particle Physics Phenomenology (IPPP), Durham University, U.K.

In these lectures we give a concise introduction to the ideas of renormalon calculus in QED and QCD. We
focus in particular on the example of the Adler D function of vacuum polarization, and on relations between
perturbative renormalon ambiguities and corresponding non-perturbative Operator Product Expansion (OPE)
ambiguities. Recent work on infrared freezing of Euclidean observables is also discussed,

1. Introduction

In these lectures I will discuss the large-order be-
haviour of perturbation theory. The field theory per-
turbation series in the renormalised coupling is not
convergent, and in nth order the coefficients exhibit
n! growth. The sources of this divergent behaviour
are instantons, which are connected with the combi-
natoric growth in the number of Feynman diagrams,
and renormalons which are associated with individual
diagrams containing chains of fermion bubbles. We
will focus on vacuum polarization in QED and QCD,
and will analyse the Borel plane singularities which
arise due to these chain diagrams, so-called ultraviolet
(UV) and infrared (IR) renormalons. In QED the UV
renormalons render perturbative results ambiguous,
whereas the ambiguity in perturbative QCD arises
from IR renormalons. The IR ambiguities in pertur-
bative QCD are associated with non-logarithmic UV
divergences in the non-perturbative Operator Product
Expansion (OPE), and can cancel between the per-
turbative and non-perturbative sectors. We shall par-
ticularly focus on the deep connections between the
perturbative and non-perturbative sectors, reporting
in the final section on some recent work on infrared
frezing [1] which suggests that IR and UV renormalons
conspire between them to provide finiteness and conti-
nuity avoiding a Landau Pole in the coupling. For an
excellent review on renormalon calculus see Ref.[2],
and for a review on connections between perturba-
tion theory and non-perturbative power corrections
see Ref.[3]. Recommended texts on quantum field the-
ory are Refs.[4, 5, 6]. We begin with a brief introduc-
tion to QCD, and introduce the vacuum polarization
on which we will largely focus.

2. Introduction to QCD

Quantum Chromodynamics (QCD) is a non-abelian
gauge theory of interacting quarks and gluons. The
gauge group is SU(Nc), and there are N2

c − 1 gluons.
Experimental indications are that Nc = 3. The La-
grangian density is

LQCD = ψ̄(iγµ∂µ −m)ψ − gs(ψ̄γ
µT aψ)Ga

µ − 1

8
Ga

µνG
µν
a .(1)

Here a = 1, 2, 3, . . . , 8, and Ta = λa/2 are the genera-
tors of SU(3), the 3 × 3 Gell-Mann λ-matrices, satis-
fying

[Ta, Tb] = ifabcTc. (2)

The quark fields carry colour, R, G, B, and transform
as a triplet in the fundamental representation

ψ(x) =

(

ψR(x)
ψG(x)
ψB(x)

)

. (3)

LQCD is invariant under local SU(3) gauge transfor-
mations

ψ(x) → U(x)ψ = eiT aαa(x)ψ(x). (4)

The field strength tensor Ga
µν contains the abelian

(QED) result and an extra term proportional to the
structure constants fabc which are responsible for
three and four-point self-interactions of gluons, not
present for photons in QED.

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν . (5)

For QCD (but not QED) one also needs to include
unphysical ghost particles. These are scalar Grass-
mann (anti-commuting) fields needed to cancel un-
physical polarization states for the gluons. The re-
quired Fadeev-Popov extra term in LQCD is

Lghost = η̄a(−∂2δac − gs∂
µfabcGb

µ)ηc. (6)

In both QED and QCD one needs also to include a
gauge fixing term if inverse propagators are to be de-
fined.

Lgauge−fixing =
1

2ξ
(∂µGa

µ)
2
. (7)

There is only one other gauge-invariant structure that
we could add involving the dual field strength tensor
G̃a

µν ,

Lθ =
θg2

s

64π2
G̃a,µνGρσ

a . (8)

This is a total derivative and so produces no ef-
fects at the perturbative level. However, if θ 6= 0
non-perturbative effects would induce a CP-violating
electric dipole moment for the neutron, experimental
constraints on this provide a bound |θ| < 3.10−10.
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2.1. QED vacuum polarization

A crucial ingredient in our later discussions will be
the one-loop vacuum polarization diagram shown in
Fig.1. Using the Feynman rules the diagram is given
by

− iΠµν(k2) ≡ (−1)

∫

d4p

(2π)4

[

(−ieγµ)αβ
i(p/+m)ββ′

p2 −m2

× (−ieγν)β′α′

i(p/+ k/+m)α′α

[(k + p)2 −m2]

]

, (9)

Here e is the QED coupling, α = e2/4π. The integral
is divergent and requires “regularization”. The most
widely applied method is “dimensional regularization”
, in which the integral is performed in D = 4 − 2ε
spacetime dimensions and then the limit ε → 0 is
taken. We need to evaluate

− iΠµν(k2) = −e2
∫

dDp

(2π)D

Tr[γµp/γν(p/+ k/)]

p2(k + p)2
. (10)

The continuation to D-dimensions endows the dimen-
sionless coupling e with a mass dimension, [e] =
2 − D

2 = ε, so one needs to replace e → eµε. One
finally obtains

− iΠµν(k2) = −i α
3π

[kµkν − gµνk2]

(

− 1

ε
+ ln

−k2

µ2

− (ln 4π − γE) − 5

3

)

. (11)

Here the divergence as ε → 0 is contributed by
Γ(ε) = 1

ε − γE + O(ε) , where γE ≈ 0.5722 is the
Euler constant. Counterterms are introduced to re-
move the 1/ε divergences (see next section), the finite
contribution they also cancel is arbitrary and deter-
mines the subtraction procedure. Modified minimal
subtraction (MS) absorbs the ln 4π − γE term, mini-
mal subtraction (MS) does not.

2.2. Renormalization and running
coupling

One needs to distinguish between the bare La-
grangian LB and the renormalised Lagrangian LR.
Bare and renormalized fields and couplings are related
by infinite renormalization factors Zi. In massless
QCD for instance one has

ψB = Z
1/2
2 ψR , Gµ,a

B = Z
1/2
3 Gµ,a

R , gsB = ZggsR.(12)

This infinite reparametrization can be implemented
by introducing counterterms into the Lagrangian.
These will contain counterterm coefficients, by choos-
ing suitable values for these coefficients proportional

to 1/ε, the divergent parts present in loop calculations
can be cancelled. One finds that the renormalised
coupling runs logarithmically with the renormaliza-
tion scale µ, and satisfies the beta-function equation

da

d lnµ
= β(a) = −ba2(1 + ca+ c2a

2 + c3a
3 + . . .).(13)

Here a(µ2) = αs(µ
2)/π = gs(µ

2)/4π2. The terms up
to and including c3 have been computed in the MS
renormalization scheme. The first two coefficients are
scheme-independent

b =
(11Nc − 2Nf)

6
, c =

(153 − 19Nf)

12b
(14)

The first Nc-dependent contribution to b arises from
gluon and ghost vacuum polarization contributions,
and the second Nf -dependent contribution is (up to
a group theory factor of T (R) = 1/2) just the QED
vacuum polarization contribution considered earlier.
Nf is the number of active quark flavours (fermion
species in QED). For SU(3) QCD withNf < 33/2, b >
0, and a(µ2) → 0 as µ2 → ∞ (Asymptotic Freedom).
At the one-loop level the solution of the equation is

a(µ2) =
2

b ln(µ2/Λ2)
. (15)

At two-loops the solution may be written in terms
of the Lambert W -function [7] defined implicitly by
W (z)exp(W (z)) = z

a(µ2) = − 1

c[1 +W (z(µ)]

z(µ) = −1

e

(µ

Λ

)−b/c

. (16)

At higher loops a(µ2) will depend on the choices of
the non-universal beta-function coefficients c2, c3, . . ..
A special choice is an ‘t Hooft scheme [8] where c2 =
c3 . . . = cn = 0 in which case a(µ2) may be written in
terms of W (z) as above.

2.3. Vacuum polarization and the e+e−

hadronic total cross section

Consider e+(p1) + e−(p2) → X , where X is a
hadronic system having total momentum q = p1 + p2.
The squared e+e− cm energy is s = q2. The relevant
amplitude is

A(e+e− → X) =
2πe2

s
v̄(p1)γ

µu(p2)〈X |Jµ|0〉. (17)

Here Jµ is the electromagnetic current for quarks

Jµ =
∑

f

Qf ψ̄fγ
µψf , (18)
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Figure 1: One-loop diagram for QED vacuum polarization

summed over active quark flavours. The e+e− total
hadronic cross section is then given by

σ =
∑

X

σ(e+e− → X)

=
8π2α2

s3
lµν

∑

X

(2π)
4
δ(4)(p1 + p2 − q)

× 〈X |Jν(0)|0〉〈X |Jµ(0)|0〉∗. (19)

Here the leptonic tensor lµν is given by

lµν =
1

4
Tr[/p1

γµ/p2
γν ]. (20)

Using the optical theorem the
∑

X term may be related
to the imaginary part of the photon propagator. We
may write

∑

X (2π)4δ(4)(p1 + p2 − q)〈0|Jµ(0)|X〉〈0|Jν(0)|X〉∗

=

∫

d4xeiq.x〈0|[Jµ(x), Jν (0)]|0〉

=
1

8π2
ImΠµν(s). (21)

Here Πµν(Q2) is the vacuum polarization function

Πµν(Q2) = 16π2i

∫

d4xeiq.x〈0|T (Jµ(x)Jν (0))|0〉(22)

Here Q2 = −q2 > 0. Conservation of Jµ, ∂µJ
µ = 0

then dictates the tensor structure

Πµν(Q2) = (qµqν − gµνq
2)Π(Q2). (23)

The quark-loop vacuum polarization diagram we con-
sidered earlier contains ln(−s/µ2) which has an Im
part of iπ. Combining with QCD colour factors, and
taking into account the fractional charges of quarks
one finds

Im[Π(0)µν(s)] =
4π

3
3
∑

f

Q2
f . (24)

One then finds for the total hadronic cross-section

σ(e+e− → hadrons, s) =
4πα2

3s
3
∑

f

Q2
f . (25)

A convenient observable to measure at e+e− colliders
such as LEP is the Re+e− ratio, defined by

Re+e−(s) =
σ(e+e− → hadrons, s)

σ(e+e− → µ+µ−, s)
. (26)

The µ+µ− cross-section can be directly measured in
the experiment,

σ(e+e− → µ+µ−, s) =
4πα2

3s
. (27)

The total hadronic cross-section differs from the µ+µ−

point cross-section by the factor 3 (= Nc colours for
each quark/anti-quark), and

∑

f Q
2
f which takes into

account the fractional quark charges. Taking the ratio
one finds

Re+e−(s) = 3
∑

f

Q2
f [1 + R(s)]. (28)

Here R(s) = RPT (s) + RNP (s) corresponds to QCD
corrections to the parton model result. The perturba-
tive (PT) contribution is of the form

RPT (s) = a(s) + r1a
2(s) + r2a

3(s) + . . . . (29)

Here a(s) denotes the coupling in the MS scheme,
the r1 and r2 corrections have been computed in the
MS scheme. The non-perturbative (NP) component
arises from the Operator Product Expansion (OPE).

Only Π(Q2)−Π(0) is observable and so it is conve-
nient to take a logarithmic derivative with respect to
Q2 and define the Adler D function,

D(Q2) = −3

4
Q2 d

dQ2
Π(Q2). (30)

This has the same parton model expression as
Re+e−(s) with the perturbative corrections RPT (s)
replaced by DPT (s),

DPT (Q2) = a(Q2) + d1a
2(Q2) + d2a

3(Q2) + . . . .(31)

R(s) is related to D(−s) , by analytical continuation
from Euclidean to Minkowskian momenta. One can
write the dispersion relation

R(s) =
1

2πi

∫ −s+iǫ

−s−iǫ

dt
D(t)

t
. (32)
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One can also write this as a circular contour integral
in the complex-s plane

R(s) =
1

2π

∫ π

−π

dθD(seiθ). (33)

3. Large-order behaviour of PT-
Instantons and Renormalons

In 1952 Dyson presented an argument [9, 10] that
QED perturbation series are divergent series with co-
efficients growing like n! in nth order. Consider

f(e2) =

∞
∑

n=0

fne
2n. (34)

Assuming that f(e2) converges for e2 > 0, implies
that f(e2) is analytic at e2 = 0, and must converge
for some negative values of e2. For e2 < 0, however,
like charges attract and unlike charges repel ! The
vacuum state is then unstable and it becomes ener-
getically favourable to create more and more e+e−

pairs. Consider a system of N interacting electrons,
the energy will be

E ∼ NT +
1

2
N2V e2. (35)

Here T is the mean kinetic energy, V the mean
coulomb potential and 1

2 (N2 −N) ∼ 1
2N

2 counts the

interacting e+e− pairs. For e2 > 0 the energy (wrt
N) is bounded from below and there exists a stable
minimum, the vacuum state, at N = 0. For e2 < 0,
however, there is an initial minimum at N = 0 be-
yond which E rises ∼ N until a maximum is reached
at N = Ncrit,

Ncrit ∼
T

V |e|2
∼ 1

e2
. (36)

Beyond this point E decreases as −N2. There is no
stable minimum. One infers that the divergent nature
of the perturbation series emerges when more than Nc

terms are considered. For n < Ncrit the fne
2n terms

decrease and fne
2n ∼ fn+1e

2n+2 at n ∼ Ncrit.

fn+1

fn
∼ 1

e2
∼ Ncrit ∼ n,

⇒ fn ∼ n!. (37)

3.1. Asymptotic Series/Borel summation

Consider a function f(g) expressed in terms of a
power series expansion

f(g) =

∞
∑

n=0

fng
n. (38)

Consider a domain D of the complex g-plane such that
arg g < π/2. The series is said to be asymptotic inside
D if the series diverges for all g 6= 0 and

∣

∣

∣

∣

f(g) −
N
∑

n=0

fng
n

∣

∣

∣

∣

≤ fN+1|g|N+1. (39)

The crucial property of asymptotic series is that the
error made in truncating the series is less than the
first neglected term. If fn ∼ n! then successive terms
will decrease until a minimum is reached at Nopt

terms, thereafter the size of the terms will increase
without limit. By truncating the series at n = Nopt

the best possible approximation is found.

One can define a function which is asymptotic to
the series by using the Borel method. If fn ∼ n! one
defines the Borel transform of the series

B[f ](z) =

∞
∑

n=0

fn

n!
gn. (40)

This series will now have a finite radius of convergence.
One can then write

f(g) =

∫ ∞

0

dze−z/g
∞
∑

n=0

fn

n!
zn. (41)

This follows since if one performs the integral term by
term and uses the result

∫ ∞

0

dze−z/gzn = n!gn, (42)

one formally reproduces the divergent power series for
f(g). If this series has a finite radius of convergence
then one can show that the B[f ](z) series has infinite
radius of convergence , and f(g) is equal to the Borel
sum

f(g) =

∫

∞

o

dze−z/gB[f ](z). (43)

If f(g) has zero radius of convergence with fn ∼ n!
then B[f ](z) will have finite radius of convergence,
and can be analytically continued outside of that ra-
dius to the whole of the integration range [0,∞]

f(g) ≈
∫

∞

0

dze−z/gB[f ](z). (44)

Here the ≈ symbol means “is asymptotic to”. Notice
that there is in general not a unique function to which
the series is asymptotic since we can always add a
term e−C/g, which has an identically zero Taylor
expansion in powers of g, and the series will also be
asymptotic to that function. If we have information
on the analytic structure of f(g) in the complex
g-plane it is sometimes possible to enforce that C = 0

IPM-LHP06-sch
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(Watson’s Theorem).

Two relevant examples which will be important
later when we introduce renormalons are alternating
and fixed-sign factorial growth. First consider the al-
ternating factorial series,

f−(g) =
∞
∑

n=0

(−1)nn!gn. (45)

This has the Borel transform

B[f−](z) =

∞
∑

n=0

(−1)
n
zn. (46)

This series converges for |z| < 1, and may be analyti-
cally continued to B[f−](z) = 1/(1 + z) on the whole
range [0,∞] one then finds,

f−(z) ≈
∫

∞

0

dze−z/g 1

(1 + z)
= −Ei(−1/g). (47)

Here Ei(x) is the Exponential integral function defined
(for x < 0) as

Ei(x) = −
∫

∞

−x

dt
e−t

t
(48)

Now consider the factorial series

f+(g) =
∞
∑

n=0

n!gn (49)

This has the Borel transform

B[f+](z) =

∞
∑

n=0

zn. (50)

This series converges for |z| < 1, and may be analyti-
cally continued to B[f+](z) = 1/(1 − z),

f+(g) =

∫ ∞

0

dze−z/g 1

(1 − z)
= Ei(1/g). (51)

For x > 0 Ei(x) is defined by

Ei(x) = −PV
∫

∞

−x

dt
e−t

t
. (52)

There is a pole at z = 1 in the Borel plane which
renders the result ambiguous, with a ±iπ contribution
depending on whether the integration contour passes
above or below the pole. Use of the principal value
(PV) prescription is equivalent to averaging over these
choices.

3.2. Proliferation of Feynman diagrams
and Instantons

Consider the following integral expressed in terms
of a power series expansion

I(g) =
1√
2π

∫ +∞

−∞

dx e−(x2/2+gx4/4)

=

∞
∑

n=0

Ing
n. (53)

This integral is the generating function for the number
of Feynman diagrams contributing to the vacuum-to-
vacuum transition amplitude of φ4 field theory. One
has

In =
1√
2π

(−1)n

4nn!

∫ +∞

−∞

x4ne−x2/2dx

=
(−1)n

√
π

Γ(2n+ 1/2)

Γ(n+ 1)
,

In ∼ (−4)n

2π
(n− 1)! (54)

and so the combinatoric growth in the number of
Feynman Diagrams would be expected, other things
being equal, to contribute to factorial growth of the
coefficients.

We now turn to a brief discussion of instantons [10].
Consider a generic Green function G(g) for a simplistic
field theory of a single field at a single spacetime point.

G(g) =
1

g

∫ +∞

−∞

dφ e−S(φ)/g. (55)

This expression can be written in terms of the Borel
transform of G(g).

G(g) =
1

g

∫ ∞

0

e−z/g B[G](z)dz. (56)

By inspection, the Borel transform of G(g) is found to
be

B[G](z) =

∫ +∞

−∞

dφ δ(z − S(φ)), (57)

and this can be rewritten by change of integration
variable as,

B[G](z) =

∫ +∞

−∞

dS(φ)

[

∂S(φ)

∂φ

]−1

δ(z − S(φ))

=
∑

i

[

∂S(φ)

∂φ

]−1∣
∣

∣

∣

∣

φ=φi

. (58)
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Here φi label all solutions φ obeying S(φ) = z. We
can see that singularities in the Borel plane occur at
values of S[φ] for which φ satisfies

∂S(φ)

∂φ
= 0. (59)

Hence φi represent extrema of the action and they
are therefore solutions to the classical equations of
motion. Consequently, singularities exist in the Borel
plane at values of the action corresponding to these
classical solutions. We expand the action in the region
of φi,

S(φ) ≃ S(φi) +
1

2
S′′(φi)(φ− φi)

2. (60)

We then rearrange this whilst defining zi = S(φi).

φ− φi ≃
(

2
(S(φ) − S(φi))

S′′(φi)

)1/2

,

⇒
[

∂S(φ)

∂φ

]−1

≃ 1
√

S′′(φi)

1√
z − zi

. (61)

Substituting this result back into the Borel integral of
Eq.(56) one finds

G(g) =
∞
∑

n=0

Gng
n,

≃
∫

∞

0

e−z/g(1 − z/zi)
−1/2dz. (62)

The series coefficients are then determined to be

Gn ≃
(

1

zi

)n
Γ(n+ 1/2)

Γ(1/2)
,

∼
(

1

zi

)n
n!

n1/2
. (63)

Thus one finds n! growth in perturbative coefficients.
The Borel plane singularities are at positions in the
z-plane corresponding to the values of the action rep-
resenting instanton solutions. By considering specific
examples such as the anharmonic oscillator [10] one
can make a concrete connection between this n! in-
stanton contribution and that due to the proliferation
of Feynman diagrams discussed above.

4. Large-Nf approximation for vacuum
polarization

Consider the Adler D-function we discussed ear-
lier (Eq.(30)) with perturbative expansion. The nth
perturbative coefficient coefficient dn in Eq.(31) may

be expanded in powers of Nf the number of quark
flavours

dn = d[n]
n Nn

f + d[n−1]
n Nn−1

f + . . .+ d[0]
n . (64)

The leading large-Nf coefficient d
[n]
n may be evalu-

ated to all-orders since it derives from a restricted set
of diagrams obtained by inserting a chain of fermion
bubbles inside the quark loop (see Fig.2). A crucial
ingredient is the chain of n-bubbles, Bµν

(n)(k
2). This

may be defined as a product of bubbles Πµν(k2) and
propagators Pµν(k2)

− iΠµν(k2) = −i(k2gµν − kµkν)Π0(k
2)

−iPµν = −i (gµν − k2(1 − ξ)kµkν)

k2
. (65)

Stringing the bubbles and propagators together gives

Bµν
(n)(k

2) =

n
∏

k=1

[

(−iPαkβk)(−iΠβkαk+1
)

]

(−iPαn+1ν).(66)

Here µ = α1. To evaluate this we will need the results

PαkβkΠβkαk+1
=

1

k2
Παk

αk+1
(67)

and

n
∏

k=1

[

Παk

αk+1

]

= Πα1
αn+1

Πn−1
0 (k2)n−1. (68)

We finally obtain

Bµν
(n)(k

2) =
(−1)n

k2
Πn−1

0 Πα1
αn+1

(−iPαn+1ν)

= (−1)n(Π0)
n

(

−i
k2

)[

gµν − kµkν

k2

]

,

Bµν
(n)(k

2) = (−1)n(Π0)
n[−iPµν(k2, ξ = 0)]. (69)

This is proportional to the Landau gauge (ξ = 0)
propagator. Explicitly

Bµν
(n) =

(k2gµν − kµkν)

(k2)
2

[

−Nf

3

(

ln
k2

µ2
+ C

)]n

. (70)

The constant C depends on the subtraction procedure
used to renormalise the bubble. With MS subtraction
C = − 5

3 . We shall choose to work in the “V-scheme”

which corresponds to MS with the scale choice µ2 =
e−5/3Q2, in which case C = 0. Applying the Feynman

rules to the three diagrams then gives d
[n]
n an+1

∼ a

∫

d4k

(2π)4
d4p

(2π)4

IPM-LHP06-sch
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1 2 n qq
k

n21

qq
k

2

n

1 qq k

Figure 2: Bubble-chain diagrams contributing to d
[n]
n .

[

Bσρ
(n)(k

2)Tr

(

γν
1

p/+ q/ + k/
γρ

1

p/+ q/
γµ

1

p/
γσ

1

p/+ k/

)

+ 2Bσρ
(n)(k

2)Tr

(

γν
1

p/ + q/
γµ

1

p/
γσ

1

p/ + k/
γρ

1

p/

)]

. (71)

The loop integrals can be evaluated using the Gegen-
bauer polynomial x-space technique, with the result
[11, 12]

d
[n]
n (V ) =

−2

3
(n+ 1)

(−1

6

)n [

−2n− n+ 6

2n+2

+
16

n+ 1

∑

n

2 +1>m>0

m(1 − 2−2m)

× (1 − 22m−n−2)ζ2m+1

]

n! . (72)

4.1. Leading-b approximation and QCD
renormalons

The large-Nf result of the last section can describe
QED vacuum polarization, but for QCD the correc-
tions to the gluon propagator involve gluon and ghost
loops, and are gauge (ξ)-dependent. The result for
Π0(k

2) is proportional to −Nf/3 which is the first
QED beta-function coefficient, b. In QCD one expects
large-order behaviour of the form dn ∼ Knγ(b/2)

n
n!

[2] involving the QCD beta-function coefficient b =
(33 − 2Nf )/6, it is then natural to relace Nf by
(33/2 − 3b) to obtain an expansion in powers of b
[13, 14, 15]

dn = d(n)
n bn + d(n−1)

n bn−1 + . . .+ d(0)
n . (73)

The leading-b term d
(L)
n ≡ d

(n)
n bn = (−3)

n
d
[n]
n bn can

then be used to approximate dn to all-orders, and an
all-orders resummation of these results performed to

obtain D(L)
PT (Q2). In order for the result to be renor-

malisation scheme independent we need to use the

one-loop form of the coupling a(Q2) = 2/bln(Q2/Λ2,
and in what follows we will work in the V -scheme dis-
cussed earlier so that C = 0 in Eq.(70). If we use
the Borel method to define the all-orders perturbative
result we obtain

D(L)
PT (Q2) =

∫ ∞

0

dz e−z/a(Q2)B[D(L)
PT ](z) . (74)

The Borel transform is given by [14]

B[D(L)
PT ](z) =

∞
∑

n=1

A0(n) −A1(n)zn
(

1 + z
zn

)2 +
A1(n)zn
(

1 + z
zn

)

+

∞
∑

n=1

B0(n) +B1(n)zn
(

1 − z
zn

)2 − B1(n)zn
(

1 − z
zn

) .(75)

The residues are given by

A0(n) =
8

3

(−1)n+1(3n2 + 6n+ 2)

n2(n+ 1)2(n+ 2)2

A1(n) =
8

3

b(−1)n+1(n+ 3
2 )

n2(n+ 1)2(n+ 2)2

B0(1) = 0, B0(2) = 1, B0(n) = −A0(−n) n ≥ 3

B1(1) = 0, B1(2) = − b

4
, B1(n) = −A1(−n) n ≥ 3.(76)

In Fig.3 we show the Borel plane singularities. For
the Adler function in leading-b approximation there

are single and double poles in B[D(L)
PT ](z) at positions

z = zn and z = −zn with zn ≡ 2n/b, n = 1, 2, 3.
The singularities on the positive real semi-axis are the
infrared renormalons, IRn and those on the negative
real semi-axis are ultraviolet renormalons, UV n. We
shall see that they correspond to integration over the
bubble-chain momentum k2 in the regions k2 < Q2
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Figure 3: Borel plane singularities for the Adler D-function. Nf = 5 active quark flavours are assumed.

and k2 > Q2, respectively. The IR1 singularity is
absent for D for reasons which we shall shortly discuss.
Hence the singularity nearest the origin is the UV 1

renormalon, which generates the leading asymptotic
behaviour

d(L)
n ≈ (12n+ 22)

27
n!

(−b
2

)n

.

The IRn singularities lie on the integration contour,
and hence there is an amiguous imaginary part de-
pending on whether the contour is routed above or
below the pole. This is structurally the same as terms
in the non-perturbative Operator Product Expansion
(OPE). We see that there are also singularities corre-
sponding to instanton contributions. These are at po-
sitions zn = 4n corresponding to the nIĪ pair contri-
bution. The leading IĪ instanton singularity at z = 4
lies well to the right of the leading IR2 singularity and
so does not dominate the asymptotic behaviour.

4.2. OPE and IR renormalon ambiguities

The regular OPE is a sum over the contributions
of condensates with different mass dimensions. In the
case of the Adler function the dimension four gluon
condensate is the leading contribution

G0(a(Q
2)) =

1

Q4
〈0|GG|0〉CGG(a(Q2)) , (77)

where CGG(a(Q2)) is the Wilson coefficient. The OPE
is of the form

DNP (Q2) =
∑

n

Cn

(

Λ2

Q2

)n

(78)

The nth term in this expansion will have the structure

Cn(a(Q2)) = Cn[a(Q2)]
δn

(1 +O(a)) . (79)

The exponent δn corresponding to the anomalous di-
mension of the condensate operator concerned. Non-
logarithmic UV divergences lead to an ambiguous
imaginary part in the coefficient [16] so that Cn =

C
(R)
n ± iC

(I)
n . If one considers an IRn renormalon

singularity in the Borel plane to be of the form
Kn/(1 − z/zn)

γn then one finds an ambiguous imagi-
nary part arising of the form

Im[DPT ] = ±Kn
πzγn

n

Γ(γn)
e−zn/a(Q2)a1−γn [1 +O(a)] .(80)

Here the ± ambiguity comes from routing the contour
above or below the real z-axis in the Borel plane. This
is structurally the same as the ambiguous OPE term

above, and if C
(I)
n = Knπz

γn

n /Γ(γn) and δn = 1 − γn,
then the PT Borel and NP OPE ambiguities can po-
tentially cancel against each other [17]. Taking a PV
of the Borel integral corresponds to averaging over
the ± possibilities. Notice that there is no conden-
sate of dimension two in the OPE, the leading gluon
condensate being of dimension four. This explains the
absence of the IR1 singularity at z = 2/b evident in
Fig.3.

5. Freezing of Euclidean
observables/skeleton expansion

We wish to investigate the Q2-dependence of Eu-
clidean observables such as the Adler function, and in

particular whether D(L)(Q2) = D(L)
PT (Q2) + D(L)

NP (Q2)
can remain finite as Q2 → 0. We shall find that these
components in the one-chain QCD skeleton expansion
both vanish as Q2 → 0 [1]. Let us introduce two
other observables. The polarised Bjorken (pBj) and
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Figure 4: Large-Nf contributions to the DIS sum rules at nth order in perturbation theory

GLS sum rules are defined as [18, 19]

KpBj ≡
∫ 1

0

gep−en
1 (x,Q2)dx

=
1

6

∣

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

∣

(

1 − 3

4
CFK(Q2)

)

, (81)

KGLS ≡ 1

2

∫ 1

0

F ν̄p+νp
3 (x,Q2)dx

= 3

(

1 − 3

4
CFK(Q2)

)

. (82)

K(Q2) being the QCD corrections to the parton model
result. We have neglected contributions due to “light-
by-light” diagrams which when omitted render the
perturbative corrections to KGLS and KpBj identi-
cal. Finally, the unpolarised Bjorken sum rule (uBj)
is defined as [20]

UuBj ≡
∫ 1

0

F ν̄p−νp
1 (x,Q2)dx

=

(

1 − 1

2
CFU(Q2)

)

. (83)

Leading-b results for K(L)
PT (Q2) and U (L)

PT (Q2) can be
computed from the diagrams in Fig.4. The expres-

sions for B[K(L)
PT ](z) and B[U (L)

PT ](z) are [21, 22]

B[K(L)
PT ](z) =

4/9
(

1 + z
z1

) − 1/18
(

1 + z
z2

) +
8/9

(

1 − z
z1

)

− 5/18
(

1 − z
z2

) (84)

B[U (L)
PT ](z) =

1/6
(

1 + z
z2

) +
4/3

(

1 − z
z1

)

− 1/2
(

1 − z
z2

) . (85)

These expressions are significantly simpler than for
the Adler function since one is inserting the bubble

chain in a tree-level diagram, rather than a one-loop
one. There are a finite number of simple poles. Using
the integrals

∫ ∞

0

e−z/a

(1 + z/zn)
= −zne

zn/aEi(−zn/a)

∫

∞

0

e−z/a

(1 + z/zn)2
= zn

[

1 +
zn

a
e−zn/aEi(zn/a)

]

, (86)

we can obtain the following resummed expressions [14]

D(L)
PT (Q2) =

∞
∑

n=1

[zne
zn/a(Q2)Ei

(

zn

a(Q2)

)

×
[

zn

a(Q2)
(A0(n) − znA1(n)) − znA1(n)

]

+ (A0(n) − znA1(n))]

+
∞
∑

n=1

zn[e−zn/a(Q2)Ei

(

zn

a(Q2)

)

×
[

zn

a(Q2)
(B0(n) + znB1(n)) − znB1(n)

]

− (B0(n) + znB1(n))], (87)

K(L)
PT (Q2) =

1

9b

[

− 8ez1/a(Q2)Ei(−z1/a(Q2))

+ 2ez2/a(Q2)Ei(−z2/a(Q2))

+ 16e−z1/a(Q2)Ei(z1/a(Q
2))

− 10e−z2/a(Q2)Ei(z2/a(Q
2))

]

, (88)

U (L)
PT (Q2) =

1

3b

[

8e−z1/a(Q2)Ei(z1/a(Q
2))

− 6e−z2/a(Q2)Ei(z2/a(Q
2))

− 2ez2/a(Q2)Ei(−z2/a(Q2))

]

. (89)

These expressions have the property that they are
finite and continuous at Q2 = Λ2 where the one-loop
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Figure 5: The perturbative corrections to the parton model result vanish in the vicinity of Q2 = Λ2 and then freeze
smoothly to zero through negative values.

coupling a(Q2) = 2/b ln(Q2/Λ2) has a Landau pole.
For Q2 < Λ2 the standard Borel representation breaks
down and as we shall argue needs to be replaced by
the modified Borel representation

D(L)
PT (Q2) =

∫

−∞

0

dz e−z/a(Q2)B[D(L)
PT ](z) . (90)

We shall show that this pair of Borel representations
are equivalent to the one-chain skeleton expansion
term in the two Q2 regions. The Q2 < Λ2 representa-
tion has an ambiguous imaginary part due to the UV n

singularities on the integration contour. In Fig.5 we
show the Q2 behaviour of the three Euclidean observ-
ables. The perturbative corrections are seen to change
sign in the vicinity of Q2 = Λ2, and there is then a
smooth freezing behaviour and they vanish asQ2 → 0.
The finiteness is delicate. For small x

Ei(x) = ln |x| + γE + O(x) (91)

and so as Q2 → Λ2 there is potentially a ln a diver-
gence. For D the coefficient of this divergent term is
[1]

−
∞
∑

n+1

z2
n[A1(n) +B1(n)] (92)

For K(L)
PT (Q2) and U (L)

PT (Q2) the equivalent coefficients
are (−8 + 2 = 16 − 10 = 0) and (8 − 6 − 2) = 0,

respectively. There is a relation between IR and UV
renormalon residues which ensures the divergent term
vanishes

z2
n+3B1(n+ 3) = −z2

nA1(n). (93)

This ensures that
∞
∑

n=1

z2
n[A1(n) +B1(n)] = 0. (94)

Another similar relation is [14]

A0(n) = −B0(n+ 2). (95)

We shall show that these relations are underwritten by
continuity of the characteristic function in the skeleton
expansion. At Q2 = Λ2 one finds the finite values,

D(L)
PT (Q2 = Λ2) =

∞
∑

n=1

zn[A0(n) −B0(n)]

−
∞
∑

n=1

z2
n[A1(n) +B1(n)] lnn

≈ 0.679938

b
, (96)

and

K(L)
PT (Q2 = Λ2) = − 8

9b
ln 2 ,
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U (L)
PT (Q2 = Λ2) = − 8

3b
ln 2 . (97)

5.1. QCD skeleton expansion

In QED the insertion of chains of bubbles into a
basic skeleton diagram produces a well-defined skele-
ton expansion. In QCD by modifying the coefficient
of ln(−k2/Q2) in Π0(k

2) to involve the QCD beta-
function coefficient b one can recast Eq.(71) in the
form

d(L)
n an+1 = a

∫ ∞

0

dk2ωD

(

k2

Q2

)

(

− ba

2
ln

(

k2

Q2

)

)n

,

⇒ D(L)
PT (Q2) =

Q2

∫

∞

0

d2k

k2
ωD

(

k2

Q2

)

k2

Q2

[

a

1 + ba
2 ln

(

k2

Q2

)

]

, (98)

which, defining t = k2/Q2, can be written as

D(L)
PT (Q2) =

∫ ∞

0

dt ωD(t)a(tQ2) . (99)

Here ωD(t) is the characteristic function. It satisfies
the normalization condition

∫ ∞

0

dt ωD(t) = 1 , (100)

which ensures that the leading coefficient of unity in
the perturbative expansion of Eq.(31) is reproduced.
ωD(t) and its first three derivatives are piecewise con-
tinuous at t = 1 and the function divides into an IR
and a UV part

D(L)
PT =

∫ 1

0

dtωIR
D

(t)a(tQ2) +

∫

∞

1

dtωUV
D

a(tQ2)(101)

We shall see that the IR k2 < Q2) and UV (k2 > Q2)
components respectively reproduce the IR renormalon
and UV renormalon contributions in the Borel plane.
For Q2 > Λ2 one encounters the Landau pole in the
coupling in the first IR integral at t = Λ2/Q2, and the
integral requires regulation (e.g. PV). This mirrors
the IR renormalon ambiguities in the Borel integral
of Eq.(74). For Q2 < Λ2 one encounters the Landau
pole in the coupling in the second UV integral, and
this requires regulation. This mirrors UV renormalon
ambiguities in the modified Borel integral of Eq.(90).
ωD(t) can be derived by using classic QED work of
Baker and Johnson on vacuum polarization. The vac-
uum polarization function of Eq.(22) can be written
as

Π(Q2) =

∫ ∞

0

dt ωΠ(t)a(tQ2) (102)

where the characterisitic function ωΠ(t) is given by

ωΠ(t) = −4

3











tΞ(t) t ≤ 1 ↔ IR

1
t Ξ
(

1
t

)

t ≥ 1 ↔ UV
(103)

Ξ(t) is given by

Ξ(t) ≡ 4

3t
[1 − ln t+

(5

2
− 3

2
ln t
)

t

+
(1 + t)2

t
[L2(−t) + ln t ln(1 + t)]]. (104)

where L2(x) is the dilogarithmic function

L2(x) = −
∫ x

0

dy
ln(1 − y)

y
.

Ξ(t) corresponds to the Bethe-Salpeter kernel for the
scattering of light-by-light involving the diagrams in
Fig.6. Notice that by attaching the ends of the
fermion bubble chain to the momentum k external
propagators in Fig.6 one reproduces the topology of
the diagrams in Fig.2. This computation of ωΠ is
a one-loop calculation, and as we shall see can be
converted directly into the Borel plane renormalon
structure for the D-function. This provides a much
simpler route than the full two-loop calculation of
Refs.[11, 12].

Changing from Π to D induces a transformation in
ωΠ of

Π(Q2) → Q2 d

dQ2
Π(Q2) = −4

3
D(Q2)

⇒ ωΠ(t) → ωΠ(t) + t
d

dt
ωΠ(t) = −4

3
ωD(t).(105)

One can write ωΠ(t) as an expansion in powers of t
and ln t times powers of t

ωIR
Π (t) = −4

3

(

∞
∑

n=1

ξnt
n + ln t

∞
∑

n=2

ξ̂nt
n

)

,(106)

and the conformal symmetry t ↔ 1
t between the UV

and IR regions means that the UV part can be written
in terms of the same coefficients

ωUV
Π (t) = −4

3

(

∞
∑

n=1

ξnt
−n − ln t

∞
∑

n=2

ξ̂nt
−n

)

.(107)

The ξn and ξ̂n are found to be

ξn>1 =
4

3

(2 − 6n2)(−1)n

(n− 1)2n2(n+ 1)2
,

ξ̂n>1 =
4

3

2(−1)n

(n− 1)n(n+ 1)

ξ1 = 1 ξ̂1 = 0. (108)
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Figure 6: Light-by-light scattering diagrams, used to calculate ωΠ.

For ωD we have

ωIR
D (t) =

∞
∑

n=1

[ξn(1 + n) + ξ̂n]tn

+ ln t

∞
∑

n=2

ξ̂n(n+ 1)tn

ωUV
D (t) =

∞
∑

n=1

[ξn(1 − n) − ξ̂n]t−n

+ ln t
∞
∑

n=2

ξ̂n(n− 1)t−n. (109)

By making the change of variables z = −a(Q2)(n +
1) ln t for t < 1 and z = a(Q2)(n − 1) ln t for t > 1,
one can transform the skeleton expansion result into
the standard Borel representation of Eqs.(74,75). For
Q2 < Λ2, a(Q2) < 0, and one obtains the modified
Borel representation of Eq.(90) in which the upper
limit of integration in z is −∞. For consistency one
requires relations between the residues A0,1, B0,1, and

the characteristic function coefficients ξn, ξ̂n.

ξn(1 + n) + ξ̂n
n+ 1

= −B1(n+ 1)zn+1 n ≥ 1

ξn(1 − n) − ξ̂n
n− 1

= A1(n− 1)zn−1 n ≥ 2 (110)

for the single pole residues and

− ξ̂n(n+ 1)

(n+ 1)2
= B0(n+ 1) +B1(n+ 1)zn+1 n ≥ 2

ξ̂n(n− 1)

(n− 1)2
= A0(n− 1) −A1(n− 1)zn−1 n ≥ 2(111)

for the double pole residues. These relations may be
used to rewrite the series for ωD(t) in terms of the
residues A0,1, B0,1,

ωIR
D (t) =

b

2

∞
∑

n=1

−z2
n+1B1(n+ 1)tn

− ln t
∞
∑

n=2

(n+ 1)2[B0(n+ 1)

+ zn+1B1(n+ 1)]tn

ωUV
D

(t) =
b

2

∞
∑

n=1

z2
n−1A1(n− 1)t−n

+ ln t

∞
∑

n=2

(n− 1)
2
[A0(n− 1)

− zn−1A1(n− 1)]t−n. (112)

One can then show that continuity of ωD(t) and its
first three derivatives at t = 1, and equivalently finite-

ness of D(L)
PT (Q2) and its first three derivatives d/d lnQ

at Q2 = Λ2 is underwritten by the following relations
between the A0,1 and B0,1 residues

∞
∑

n=1

z2
n[A1(n) +B1(n)] = 0. (113)

This is just Eq.(94) which guarantees finiteness of
D(Q2) at Q2 = Λ2. In addition we have more compli-
cated relations which underwrite continuity and finite-
ness of the derivatives.[1]

∞
∑

n=1

[2z3
n(A1(n)

− B1(n)) − z2
n(A0(n) +B0(n)] = 0 . (114)

∞
∑

n=1

[3z4
n(A1(n) +B1(n))

− 2z3
n(A0(n) −B0(n))] = 0 . (115)

∞
∑

n=1

[4z5
n(A1(n) −B1(n))

− 3z4
n(A0(n) +B0(n))] = 0 . (116)

5.2. The NP component

It is easy to show [1] that the ambiguous imaginary

part in D(L)
PT arising from IR renormalons for Q2 >

Λ2 and UV renormalons for Q2 < Λ2 can be written
directly in terms of ωIR

D
and ωUV

D
,

Im[D(L)
PT (Q2)] = ±2π

b

Λ2

Q2
ωIR
D

(

Λ2

Q2

)

(Q2 > Λ2)

Im[D(L)
PT (Q2)] = ±2π

b

Λ2

Q2
ωUV
D

(

Λ2

Q2

)

(Q2 < Λ2)(117)
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Figure 7: The bold curves show the choice κ = 0, i.e. just the PT component as in the earlier plots. The upper and
lower curves correspond to the choices κ = 1 and κ = −1, respectively.

Continuity at Q2 = Λ2 then follows from continu-
ity of ωD(t) at t = 1. In principle the real part of
the OPE condensates are independent of the imagi-
nary, but continuity and finiteness involve the set of
relations between A0,1 and B0,1 in Eqs.(113-116). Al-
though not strictly necessary for continuity, continuity
naturally follows if we write

D(L)
NP (Q2) =

(

κ± 2πi

b

)
∫ Λ2/Q2

0

dt

(

ωD(t) + t
dωD(t)

dt

)

.(118)

Here κ is an overall real non-perturbative constant. If
the PT component is PV regulated then one averages
over the ± possibilities for contour routing, combining

with D(L)
PT one can then write down the overall result

for D(L)(Q2).

D(L)(Q2) =

∫ ∞

0

dt

[

ωD(t)a(tQ2)

+ κ

(

ωD(t) + t
dωD(t)

dt

)

θ(Λ2 − tQ2)

]

.(119)

The Q2 evolution is fixed by the non-perturbative
constant κ and by Λ. The evolution for the choices
κ = 0, 1,−1 is shown in Fig.7. We see that the
QCD corrections to the parton model result correc-
tions freeze smoothly to zero as Q2 → 0.

6. Concluding remarks

In these lectures we have shown how the large-order
growth of perturbative coefficients in QED and QCD
is dominated by renormalon contributions associated
with diagrams such as those in Figs.2,4, in which
chains of fermion bubbles are inserted inside a ba-
sic skeleton diagram. We have focused on the vacuum
polarization Adler function D(Q2) as our main ex-
ample, with a cursory consideration of DIS sum rules
as well. In QCD one is forced to use the so-called
leading-b approximation in which one inserts chains of
effective bubbles in which the logarithm in the renor-
malised Π0(k

2) has a coefficient of b, since correc-
tions to the gluon propagator are gauge-dependent.
In the approximation in which a single chain is in-
serted one finds single and double pole IR and UV
renormalon singularities in the Borel plane for Adler-
D and for the DIS sum rules. Interestingly, these
one-chain approximation results are finite and con-
tinuous at Q2 = Λ2 where the coupling has a Landau
pole, and this property is underwritten by relations
between IR (k2 < Q2) and UV (k2 > Q2) physics,
where k2 refers to the momentum flowing through the
bubble chain. There are corresponding relations be-
tween IR and UV renormalon residues. These con-
nections are more transparent in the language of the
one-chain skeleton expansion of Eq.(99) in which they
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are seen to correspond to continuity of the character-
istic function ω(t) and its derivatives. Perturbative
and non-perturbative ambiguities which contribute an
imaginary part may also be written in terms of the
characteristic function. Presumably the one-chain ap-
proximation is far too crude to describe the real non-
perturbative infra-red behaviour of QCD observables
, but is interesting that it does have the properties of
continuity and finiteness that must be possessed by
the true all-orders result. It will be interesting in fu-
ture studies to see how these properties arise if one
includes higher numbers of chains, and also instanton
effects.
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