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We use the next-to-next-to-leading order (NNLO) contributions to anomalous dimension governing the evolution
of non-singlet quark distributions. We use the xF3 data of the CCFR collaboration to obtain some unknown
parameters which exist in the non-singlet quark distributions in the NNLO approximation. In the fitting
procedure, Bernstein polynomial method is used. The results of valence quark distributions in the NNLO, are
in good agreement with the available theoretical model.

1. Introduction

The global parton analyses of deep inelastic scatter-
ing (DIS) and the related hard scattering data are gen-
erally performed at NLO order. Presently the next-to
leading order (NLO) is the standard approximation
for most important processes in QCD.

The corresponding one- and two-loop split-
ting functions have been known for a long time
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The NNLO cor-
rections should to be included in order to arrive at
quantitatively reliable predictions for hard processes
occurring at present and future high-energy colliders.
These corrections are so far known only for the
structure functions in the deep-inelastic scattering
[12, 13, 14, 15].

Recently much effort has been invested in com-
puting NNLO QCD corrections to a wide variety
of partonic processes and therefore it is needed
to generate parton distributions also at NNLO so
that the theory can be applied in a consistent manner.

S. Moch and et al. [16, 17] computed the higher or-
der contributions up to three-loops splitting functions
governing the evolution of unpolarized non-singlet
quark densities in perturbative QCD.

During the recent years the interest to use CCFR
data [18] for xF3 structure function in higher orders,
based on orthogonal polynomial expansion method
has been increased [19, 20, 21, 22, 23, 24].

In this paper we determine the flavor non-
singlet parton distribution functions, xuv(x, Q2) and
xdv(x, Q2), using the Bernstein polynomial approach
up to NNLO level. This calculation is possible now,
as the non-singlet anomalous dimensions in n-Moment
space in three loops have been already introduced
[16, 17].

2. The theoretical background of the
QCD analysis

In the NNLO approximation the deep inelastic co-
efficient functions are known and also the anomalous
dimensions in n-Moment space are available at this
order[16, 17]. Since in this paper we want to calcu-
late the non-singlet parton distribution functions in
the NNLO by using CCFR experimental data, we in-
troduce the moments of non-singlet structure function
up to three loops order.

Let us define the Mellin moments for the νN struc-
ture function xF3(x, Q2):

Mn(Q2) =

∫ 1

0

xn−1F3(x, Q2)dx . (1)

The theoretical expression for these moments obey
the following renormalization group equation

(

µ
∂

∂µ
+β(As)

∂

∂As
+γ

(n)
NS(As)

)

Mn(Q2/µ2, As(µ
2)) = 0 ,

(2)
where As = αs/(4π) is the renormalization group cou-
pling and is governed by the QCD β-function as

µ
∂As

∂µ
= β(As) = −2

∑

i≥0

βiA
i+2
s . (3)

The solution of Eq.(3) in the NNLO is given by

ANNLO
s =

1

β0 lnQ2/Λ2
MS

−
β1 ln(lnQ2/Λ2

MS
)

β3
0(lnQ2/Λ2

MS
)2

+

1

β5
0(lnQ2/Λ2

MS
)3

[β2
1 ln2(ln Q2/Λ2

MS
) −

β2
1 ln(lnQ2/Λ2

MS
) + β2β0 − β2

1 ] .

(4)
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Notice that in the above the numerical expressions
for β0, β1 and β2 are

β0 = 11 − 0.6667f ,

β1 = 102 − 12.6667f ,

β2 = 1428.50− 279.611f + 6.01852f2 , (5)

where f denotes the number of active flavors.

The solution of the renormalization group equa-
tion for non-singlet structure function xF3 can be pre-
sented in the following form [22]:

Mn(Q2)

Mn(Q2
0)

= exp

[

−
∫ As(Q2)

As(Q2

0
)

γ
(n)
NS(x)

β(x)
dx

]

C
(n)
NS(As(Q

2))

C
(n)
NS(As(Q2

0))
,

(6)
where Mn(Q2

0) is a phenomenological quantity related
to the factorization scale dependent factor which we
will parameterize in next section. γNS

n is the anoma-
lous function and has a perturbative expansion as

γNS
n (As) =

∑

i≥0

γNS
i (n)Ai+1

s . (7)

At the NNLO the expression for the coefficient func-

tion C
(n)
NS can be presented as [25]

C
(n)
NS(As) = 1 + C(1)(n)As + C(2)(n)A2

s . (8)

With the corresponding expansion of the anomalous
dimensions, given by Eq. (7), the solution to the three
loops evolution equation from Eq. (6), is as follows

MNNLO
n (Q2) =

(

As(Q
2)

As(Q2
0)

)γNS
0

/2β0

×
{

1 + [As(Q
2) − As(Q

2
0)]

(

γ1

2β1
− γNS

0

2β0

)

β1

β0

+[As(Q
2) − As(Q

2
0)]

2 β2
1

8β2
0

(

γ1

β1
− γNS

0

β0

)2

+
1

4
[A2

s(Q
2) − A2

s(Q
2
0)]

(

1

β0
γ2 −

β1

β2
0

γ1 +
β2

1 − β2β0

β3
0

γNS
0

)}

(

1 + C(1)As(Q
2) + C(2)A2

s(Q
2)

)

V (n, Q2
0) . (9)

Where V is the valence quark compositions as

V (n, Q2
0) = uv(n, Q2

0) + dv(n, Q2
0) . (10)

As we see in Mellin-n space the non-singlet (NS) parts
of structure function in the NNLO approximation for
example, i.e. MNNLO

n (Q2), can be obtained from the
corresponding Wilson coefficients C(k) and the non-
singlet quark densities.

In next section we will introduce the functional form
of the valence quark distributions and we will param-
eterize these distributions at the scale of Q2

0.
By using the anomalous dimensions in one , two and

three loops from [16] and inserting them in Eq. (9),
the moment of non-singlet structure function in the
NNLO as a function of n and Q2 is available.

3. Parametrization of the parton
densities

In this section we will discuss how we can determine
the parton distribution at the input scale of Q2

0 = 1
GeV2. To start the parameterizations of the above
mentioned parton distributions at the input scale of
Q2

0 we assume the following functional form

xuv(x, Q2
0) = Nuxa(1 − x)b(1 + c

√
x + dx) , (11)

xdv(x, Q2
0) =

Nd

Nu
(1 − x)e xuv(x, Q2

0) . (12)

In the above the xa term controls the low-x behavior
parton densities, and (1− x)b,e large values of x. The
remaining polynomial factor accounts for additional
medium-x values. Normalization constants Nu and
Nd are fixed by

∫ 1

0

uv(x)dx = 2 , (13)

∫ 1

0

dv(x)dx = 1 . (14)

The above normalizations are very effective to control
unknown parameters in Eqs. (11,12) via the fitting

procedure. The five parameters with Λ
Nf=4
QCD will

be extracted by using the Bernstain polynomials
approach.

Using the valence quark distribution functions, the
moments of uv(x, Q2

0) and dv(x, Q2
0) distributions can

be easily calculated. Now by inserting the Mellin mo-
ments of uv and dv valence quark in the Eq. (10), the
function of V (n, Q2

0) involves some unknown parame-
ters.

4. Averaged structure functions

Although it is relatively easy to compute the nth
moment from the structure functions, the inverse pro-
cess is not obvious. To do this inversion, we adopt a
mathematically rigorous but easy method [26] to in-
vert the moments and retrieve the structure functions.
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The method is based on the fact that for a given value
of Q2, only a limited number of experimental points,
covering a partial range of values of x are available.
The method devised to deal with this situation is to
take averages of the structure function weighted by
suitable polynomials. These are the Bernstein poly-
nomials which are defined by

Bnk(x) =
Γ(n + 2)

Γ(k + 1)Γ(n − k + 1)
xk(1−x)n−k ; n ≥ k .

(15)
Using the binomial expansion, the above equation can
be written as

Bn, k(x) =
Γ(n + 2)

Γ(k + 1)

n−k
∑

l=0

(−1)l

l!(n − k − l)!
xk+l . (16)

Now, we can compare theoretical predictions with the
experimental results for the Bernstein averages, which
are given by [27, 28]

Fnk(Q2)≡
∫ 1

0

dxBnk(x)F3(x, Q2) . (17)

Therefore, the integral Eq. (17) represents an aver-
age of the function F3(x, Q2) in the region x̄nk −
1
2∆xnk≤x≤x̄n,k + 1

2∆xnk. The key point is, the val-
ues of F3 outside this interval have a small contribu-
tion to the above integral, as Bnk(x) tends to zero
very quickly. In order to ensure the equivalence of
the integral Eq. (17) to the same integral in the range
x1 = x̄nk − 1

2∆xnk to x2 = x̄nk + 1
2∆xnk, we have

to use the normalization factor,
∫ x2

x1

dxBnk(x) in the

denominator of Eq. (17) which obviously is not equal
to 1. So it can be written:

Fnk(Q2)≡

∫ x̄nk+ 1

2
∆xnk

x̄nk−
1

2
∆xnk

dx Bnk(x) F3(x, Q2)

∫ x̄nk+ 1

2
∆xnk

x̄nk−
1

2
∆xnk

dx Bnk(x)
. (18)

By a suitable choice of n, k we manage to adjust to
the region where the average is peaked around values
which we have experimental data [18].

Substituting Eq. (16) in Eq. (17), it follows that the
averages of F3 with Bnk(x) as weight functions can be
obtained in terms of odd and even moments,

Fnk =
(n − k)!Γ(n + 2)

Γ(k + 1)Γ(n − k + 1)
×

n−k
∑

l=0

(−1)l

l!(n − k − l)!
M((k + l) + 1, Q2) .

(19)

We can only include a Bernstein average, Fnk, if we
have experimental points covering the whole range
[x̄nk − 1

2∆xnk, x̄nk + 1
2∆xnk] [29]. This means that

with the available experimental data we can only use
the following 28 averages, including

F
(exp)
2,1 (Q2), F

(exp)
3,1 (Q2), F

(exp)
4,2 (Q2),..., F

(exp)
13,4 (Q2).

Another restriction we assume here, is to ignore the
effects of moments with high order n which do not
strongly constrain the fits. To obtain these experimen-
tal averages from CCFR data [18], we fit xF3(x, Q2)
for each bin in Q2 separately to the convenient phe-
nomenological expression

xF3
(phen) = AxB(1 − x)C . (20)

This form ensures zero values for xF3 at x = 0, and
x = 1. In Table 1 we have presented the numerical
values of A,B and C at Q2 = 20, 31.6, 50.1, 79.4, 125.9
GeV2.

Q2(GeV 2) A B C
20 4.742 0.636 3.376

31.6 5.473 0.694 3.659

50.1 5.679 0.698 3.839

79.4 4.508 0.567 3.757

125.9 7.077 0.819 4.246

Table 1: Numerical values of fitting A,B, C
parameters in Eq. (20).

Using Eq. (20) with the fitted values of A,B and C,

one can then compute F
(exp)
nk (Q2) in terms of Gamma

functions. Some sample experimental Bernstein aver-
ages are plotted in Fig. 1 in the higher approximations.

The errors in the F
(exp)
nk (Q2) correspond to allowing

the CCFR data for xF3 to vary within the experimen-
tal error bars, including the experimental systematic
and statistical errors [18]. We have only included data
for Q2≥20GeV2, this has the merit of simplifying the
analysis by avoiding evolution through flavor thresh-
olds.

Using Eq. (19), the 28 Bernstein averages Fnk(Q2)
can be written in terms of odd and even moments.
For instance:

F2,1(Q
2) = 6

(

M(2, Q2) −M(3, Q2)
)

,

... (21)

The unknown parameters according to Eqs. (11,12)

will be a, b, c, d, e and Λ
Nf

QCD. Thus, there are 6 pa-
rameters for each order to be simultaneously fitted to
the experimental Fnk(Q2) averages. Using the CERN
subroutine MINUIT [30], we defined a global χ2 for
all the experimental data points and found an accept-
able fit with minimum χ2/dof = 74.772/134 = 0.558
in the NNLO case with the standard error of order
10−3. The best fit is indicated by some sample

IPM-LHP06-19May
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Figure 1: NNLO fit to Bernstein averages of xF3.

curves in the Fig. 1. The fitting parameters and the
minimum χ2 values in each order are listed in Table 2.

From Eqs.(11,12), we are able now to determine
the xuv and xdv at the scale of Q2

0 in higher order
corrections. In Fig. 2 we have plotted the NLO and
NNLO approximation results of xuv and xdv at the
input scale Q2

0 = 1.0 GeV 2 (solid line) compared
to the results obtained from NNLO analysis (left
panels) and NLO analysis (right panels) by MRST
(dashed-dotted line) [31] and A05(dashed line)[32].

NNLO

Nu 5.134

a 0.830

b 3.724

c 0.040

d 1.449

Nd 3.348

e 1.460

Λ
(4)
QCD, MeV 230

χ2/ndf 0.558

Table 2: Parameter values of the NNLO non-singlet
QCD fit at Q2

0 = 1 GeV2.

All of the non-singlet parton distribution functions
in moment space for any order are now available, so
we can use the inverse Mellin technics to obtain the
Q2 evolution of valance quark distributions which will
be done in the next section.

10
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NNLO Fit
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A05
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0
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0.4
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A05

Q
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2

xuv(x)

xdv(x)

Figure 2: The parton densities xuv and xdv at the input
scale Q2

0 = 1.0 GeV 2 (solid line) compared to results
obtained from NNLO analysis by MRST (dashed line)
[31] and A05(dashed-dotted line)[32].

5. x dependent of valence quark
densities

In the previous section we parameterized the non-
singlet parton distribution functions at input scale of
Q2

0 = 1 GeV2 in the NNLO approximations by us-
ing Bernstein averages method. To obtain the non-
singlet parton distribution functions in x-space and
for Q2 > Q2

0 GeV2 we need to use the Q2-evolution
in n-space. To obtain the x-dependence of parton dis-
tributions from the n−dependent exact analytical so-
lutions in the Mellin-moment space, one has to per-
form a numerical integral in order to invert the Mellin-
transformation [33]

fk(x, Q2) =
1

π

∫ ∞

0

dw ×

Im[eiφx−c−weiφ

Mk(n = c + weiφ, Q2)] ,

(22)

where the contour of the integration lies on the right
of all singularities of Mk(n = c + weiφ, Q2) in the
complex n-plane. For all practical purposes one may

IPM-LHP06-19May
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choose c ≃ 1, φ = 135◦ and an upper limit of integra-
tion, for any Q2, of about 5 + 10/ lnx−1, instead of
∞, which guarantees stable numerical results [34, 35].

6. Conclusion

The QCD analysis is performed in NNLO based on
Bernstein polynomial approach. We determine the
valence quark densities in a wide range of x and Q2.
Inserting the functions of qv(n, Q2) for q = u, d in Eq.
(22) we can obtain all valence distribution functions in
fixed Q2 and in x-space. In Fig. 3 we have presented
the parton distribution xuv at some different values
of Q2. These distributions were compared with some
theoretical models [31, 32].
In Fig. 3 we have also presented the same distributions
for xdv.

0
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0.5
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2
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2

Figure 3: The parton distribution xuv and xdv at some
different values of Q2. The solid line is our model,
dashed line is the MRST model [31], dashed-dotted line
is the model from [32].

The QCD scale ΛNf=4
QCD is determined together with

the parameters of the parton distributions. In our fit
results the value of ΛNf=4

QCD and αs(M
2
Z) at the NNLO

analysis is 230 MeV and 0.1142 respectively.
Complete details of this paper with calculation of LO,
NLO and NNLO and also comparing them with to-
gether is reported in Ref. [36].
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