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At the School I gave three lectures on neutrino masses and mixings. Much of the material covered
in my first two lectures is written down in a review on the subject that I published not long ago
with F. Feruglio [1]. Here, I make a relatively short summary (with updates) of the content of my
first two lectures, referring to our review for a more detailed presentation, and then I expand on
the content of the third lecture which was dedicated to recent work on A4 models of tri-bimaximal
neutrino mixing which were not covered in the review.

I. INTRODUCTION

By now there is convincing evidence for solar and at-
mospheric neutrino oscillations. The ∆m2 values and
mixing angles are known with fair accuracy. A sum-
mary, taken from Ref. [2] of the results is shown in Ta-
ble I. For the ∆m2 we have: ∆m2

atm ∼ 2.4 10−3 eV 2

and ∆m2
sol ∼ 7.9 10−5 eV 2. As for the mixing angles,

two are large and one is small. The atmospheric an-
gle θ23 is large, actually compatible with maximal but
not necessarily so: at 3σ: 0.29 <∼ sin2 θ23

<∼ 0.71 with
central value around 0.44. The solar angle θ12, the
most precisely measured, is large, sin2 θ12 ∼ 0.31, but
certainly not maximal (by about 6 σ now). The third
angle θ13, strongly limited mainly by the CHOOZ ex-
periment, has at present a 3σ upper limit given by
about sin2 θ13 <∼ 0.04.

In spite of this experimental progress there are still
many alternative routes in constructing models of neu-
trino masses. This variety is mostly due to the con-
siderable ambiguities that remain. First of all, it is
essential to know whether the LSND signal, which has
not been confirmed by KARMEN and is currently be-
ing double-checked by MiniBoone, will be confirmed
or will be excluded. If LSND is right we probably need
at least four light neutrinos; if not we can do with only
the three known ones, as we assume here in the fol-
lowing. Then, as neutrino oscillations only determine
mass squared differences a crucial missing input is the
absolute scale of neutrino masses. Also the pattern
of the neutrino mass spectrum is not known: it could
be approximately degenerate with m2 >> ∆m2

ij or of
the inverse hierarchy type (with the 1,2 solar doublet
on top) or of the normal hierarchy type (with the solar
doublet below).

The following experimental information on the ab-
solute scale of neutrino masses is available. From the
endpoint of tritium beta decay spectrum we have an
absolute upper limit of 2 eV (at 95% C.L.) on the

mass of ”ν̄e” [3], which, combined with the observed
oscillation frequencies under the assumption of three
CPT-invariant light neutrinos, represents also an up-
per bound on the masses of all active neutrinos. A
less direct information on the mass scale is obtained
from neutrinoless double beta decay (0νββ). The dis-
covery of 0νββ decay would be very important be-
cause it would directly establish lepton number vio-
lation and the Majorana nature of ν’s. The present
limit from 0νββ is affected by a relatively large uncer-
tainty due to ambiguities on nuclear matrix elements.
We quote here two recent limits (90%c.l.): |mee| <
0.33− 1.35 eV [IGEX(76Ge) [4]] or |mee| < (0.2− 1.1)
eV [Cuoricino(130Te) [5]], where mee =

∑

U2
eimi in

terms of the mixing matrix and the mass eigenval-
ues (see eq.(5)). Complementary information on the
sum of neutrino masses is also provided by measure-
ments in cosmology, where an extraordinary progress
has been made in the last years, in particular data on
the cosmic microwave background (CMB)anisotropies
(WMAP), on the large scale structure of the mass dis-
tribution in the Universe (SDSS, 2dFGRS) and from
the Lyman alpha forest [6]. WMAP by itself is not
very restrictive:

∑

i |mi| < 2.11 eV (at 95% C.L.).
Combining CMB data with those on the large scale
structure one obtains

∑

i |mi| < 0.68 eV. Adding
also the data from the Lyman alpha forest one has
∑

i |mi| < 0.17 eV [7]. But this last combination is
questionable because of some tension (at ∼ 2σ’s) be-
tween the Lyman alpha forest data and those on the
large scale structure. In any case, the cosmological
bounds depend on a number of assumptions (or, in
fashionable terms, priors) on the cosmological model.
In summary, from cosmology for 3 degenerate neutri-
nos of mass m, depending on which data sets we in-
clude and on our degree of confidence in cosmological
models, we can conclude that m <∼ 0.06−0.23−0.7 eV .

Given that neutrino masses are certainly extremely
small, it is really difficult from the theory point of
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TABLE I: Best fit values of squared mass differences and mixing angles[2]

lower limit best value upper limit

(2σ) (2σ)

(∆m2
sun)LA (10−5 eV2) 7.2 7.9 8.6

∆m2
atm (10−3 eV2) 1.8 2.4 2.9

sin2 θ12 0.27 0.31 0.37

sin2 θ23 0.34 0.44 0.62

sin2 θ13 0 0.009 0.032

view to avoid the conclusion that L conservation is
probably violated. In fact, in terms of lepton number
violation the smallness of neutrino masses can be nat-
urally explained as inversely proportional to the very
large scale where L is violated, of order MGUT or even
MPl. If neutrinos are Majorana particles, their masses
arise from the generic dimension-five non renormaliz-
able operator of the form:

O5 =
(Hl)T

i λij(Hl)j

M
+ h.c. , (1)

with H being the ordinary Higgs doublet, li the SU(2)
lepton doublets, λ a matrix in flavour space, M a large
scale of mass and a charge conjugation matrix C be-
tween the lepton fields is understood. Neutrino masses
generated by O5 are of the order mν ≈ v2/M for
λij ≈ O(1), where v ∼ O(100 GeV) is the vacuum ex-
pectation value of the ordinary Higgs. A particular re-
alization leading to comparable masses is the see-saw
mechanism, where M derives from the exchange of
heavy νR’s: the resulting neutrino mass matrix reads:

mν = mT
DM−1mD . (2)

that is, the light neutrino masses are quadratic in the
Dirac masses and inversely proportional to the large

Majorana mass. For mν ≈
√

∆m2
atm ≈ 0.05 eV and

mν ≈ m2
D/M with mD ≈ v ≈ 200 GeV we find M ≈

1015 GeV which indeed is an impressive indication for
MGUT . Thus probably neutrino masses are a probe
into the physics at MGUT .

II. THE ν-MIXING MATRIX

If we take maximal s23 (sij = sin θij) and keep
only linear terms in u = s13e

iϕ, from experiment we
find the following structure of the Ufi (f = e,µ,τ ,
i = 1, 2, 3) mixing matrix, apart from sign convention
redefinitions:

Ufi =




c12 s12 u
−(s12 + c12u

∗)/
√

2 (c12 − s12u
∗)/

√
2 1/

√
2

(s12 − c12u
∗)/

√
2 −(c12 + s12u

∗)/
√

2 1/
√

2





(3)

If s13 would be exactly zero there would be no CP
violations in ν oscillations. A main target of the new
planned oscillation experiments is to measure the ac-
tual size of s13. In the next decade the upper limit
on sin22θ13 will possibly go down by at least an or-
der of magnitude (T2K, NoνA, DoubleCHOOZ.....)
[8]. Even for three neutrinos the pattern of the neu-
trino mass spectrum is still undetermined: it can
be approximately degenerate, or of the inverse hier-
archy type or normally hierarchical. Given the ob-
served frequencies and the notation ∆m2

sun ≡ ∆m2
12,

∆m2
atm ≡ |∆m2

23| with ∆m2
12 = |m2|2 − |m1|2 > 0

and ∆m2
23 = m2

3 − |m2|2, the three possible patterns
of mass eigenvalues are:

Degenerate : |m1| ∼ |m2| ∼ |m3| ≫ |mi − mj |
Inverted hierarchy : |m1| ∼ |m2| ≫ |m3|
Normal hierarchy : |m3| ≫ |m2,1| (4)

The sign of ∆m2
23 can be measured in the future

through matter effects in long baseline experiments
[8]. Models based on all these patterns have been pro-
posed and studied and all are in fact viable at present.

The detection of neutrino-less double beta decay,
besides its enormous intrinsic importance as a di-
rect evidence of L non conservation, would also of-
fer a way to possibly disintangle the 3 cases. The
quantity which is bound by experiments is the 11
entry of the ν mass matrix, which in general, from
mν = U∗mdiagU

†, is given by :

|mee| = |(1 − s2
13) (m1c

2
12 + m2s

2
12) + m3e

2iφs2
13|(5)

Starting from this general formula it is simple to derive
the following bounds for degenerate, inverse hierarchy
or normal hierarchy mass patterns.

a) Degenerate case. If |m| is the common mass and
we set s13 = 0, which is a safe approximation in
this case, because |m3| cannot compensate for
the smallness of s13, we have mee ∼ |m|(c2

12 ±
s2
12). Here the phase ambiguity has been re-

duced to a sign ambiguity which is sufficient for
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deriving bounds. So, depending on the sign we
have mee = |m| or mee = |m|cos2θ12. We con-
clude that in this case mee could be as large
as the present experimental limit but should be

at least of order O(
√

∆m2
atm) ∼ O(10−2 eV)

given that the solar angle cannot be too close to
maximal (in which case the minus sign option
could be arbitrarily small). The experimental
2-σ range of the solar angle does not favour a
cancellation by more than a factor of about 3.

b) Inverse hierarchy case. In this case the same
approximate formula mee = |m|(c2

12±s2
12) holds

because m3 is small and the s13 term in eq.(5)
can be neglected. The difference is that here

we know that |m| ≈
√

∆m2
atm so that |mee| <

√

∆m2
atm ∼ 0.05 eV. At the same time, since a

full cancellation between the two contributions
cannot take place, we expect |mee| > 0.01 eV.

c) Normal hierarchy case. Here we cannot in gen-
eral neglect the m3 term. However in this case

|mee| ∼ |
√

∆m2
sun s2

12 ±
√

∆m2
atm s2

13| and
we have the bound |mee| < a few 10−3 eV.

Recently some evidence for 0νββ was claimed [9] cor-
responding to |mee| ∼ (0.2÷0.6) eV ((0.1÷0.9) eV in
a more conservative estimate of the involved nuclear
matrix elements). This result is not supported by the
IGEX and Cuoricino measurements of a comparable
sensitivity, but If confirmed it would rule out cases b)
and c) and point to case a) or to models with more
than 3 neutrinos. In the next few years a new gen-
eration of experiments will reach a larger sensitivity
on 0νββ by about an order of magnitude. If these
experiments will observe a signal this would indicate
that the inverse hierarchy is realized, if not, then the
normal hierarchy case remains a possibility.

III. ”NORMAL” VERSUS ”EXCEPTIONAL”

MODELS

After KamLAND, SNO and WMAP not too much
hierarchy in neutrino masses is indicated by experi-
ments:

r = ∆m2
sol/∆m2

atm ∼ 1/30. (6)

Precisely at 2σ: 0.025 <∼ r <∼ 0.049 [2]. Thus, for
a hierarchical spectrum, m2/m3 ∼ √

r ∼ 0.2, which
is comparable to the Cabibbo angle λC ∼ 0.22 or
√

mµ/mτ ∼ 0.24. This suggests that the same hierar-
chy parameter (raised to powers with o(1) exponents)
applies for quark, charged lepton and neutrino mass
matrices. This in turn indicates that, in absence of
some special dynamical reason, we do not expect a
quantity like θ13 to be too small. Indeed it would be
very important to know how small the mixing angle

θ13 is and how close to maximal is θ23. Actually one
can make a distinction between ”normal” and ”excep-
tional” models. For normal models θ23 is not too close
to maximal and θ13 is not too small, typically a small
power of the self-suggesting order parameter

√
r, with

r = ∆m2
sol/∆m2

atm ∼ 1/30. Exceptional models are
those where some symmetry or dynamical feature as-
sures in a natural way the near vanishing of θ13 and/or
of θ23 − π/4. Normal models are conceptually more
economical and much simpler to construct. Typical
categories of normal models are:

a) Anarchy. These are models with approximately
degenerate mass spectrum and no ordering prin-
ciple, no approximate symmetry assumed in the
neutrino mass sector [10] [1]. The small value
of r is accidental, due to random fluctuations
of matrix elements in the Dirac and Majorana
neutrino mass matrices. Starting from a ran-
dom input for each matrix element, the see-saw
formula, being a product of 3 matrices, gener-
ates a broad distribution of r values. All mixing
angles are generically large: so in this case one
does not expect θ23 to be maximal and θ13 must
probably be found near its upper bound.

b) Semianarchy. We have seen that anarchy is the
absence of structure in the neutrino sector. Here
we consider an attenuation of anarchy where the
absence of structure is limited to the 23 sector.
The typical structure is in this case [11] [1]:

mν ≈ m







δ ǫ ǫ

ǫ 1 1

ǫ 1 1






, (7)

where δ and ǫ are small and by 1 we mean en-
tries of o(1) and also the 23 determinant is of
o(1). This texture can be realized, for example,
without see-saw from a suitable set of U(1)F

charges for (l1, l2, l3), eg (a, 0, 0) appearing in
the dim. 5 operator of eq.(1). Clearly, in gen-
eral we would expect two mass eigenvalues of
order 1, in units of m, and one small, of order δ
or ǫ2. This typical pattern would not fit the ob-
served solar and atmospheric observed frequen-
cies. However, given that

√
r is not too small,

we can assume that its small value is generated
accidentally, as for anarchy. We see that, if by
chance the second eigenvalue η ∼ √

r ∼ δ + ǫ2,
we can then obtain the correct value of r to-
gether with large but in general non maximal
θ23 and θ12 and small θ13 ∼ ǫ. The guaranteed
smallness of θ13 is the main advantage over an-
archy, and the relation with

√
r normally keeps

θ13 not too small. For example, δ ∼ ǫ2 in typi-
cal U(1)F models that provide a very economical
but effective realization of this scheme .

IPM-LHP06-sch
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c) Inverse hierarchy. In the limit of exact Le −
Lµ − Lτ symmetry we have inverted hierar-
chy with r = 0 and bi-maximal mixing (both
θ12 and θ23 are maximal) [1]. Simple forms of
symmetry breaking cannot sufficiently displace
θ12 from the maximal value because typically
tan2 θ12 ∼ 1 + o(r). Viable normal models can
be obtained by arranging large contributions to
θ23 and θ12 from the charged lepton mass diago-
nalization. But then, it turns out that, in order
to obtain the measured value of θ12, the size of
θ13 must be close to its present upper bound
[12]. If indeed the shift from maximal θ12 is
due to the charged lepton diagonalization, this
could offer a possible track to explain the em-
pirical Raidal relation θ12 + θC = π/4 [13](with
present data θ12 + θC = (47.0 + 1.7 − 1.6)0).
While it would not be difficult in this case to
arrange that the shift from maximal is of the or-
der of θC , it is not clear how to guarantee that
it is precisely equal to θC [14]. Besides the ef-
fect of the charged lepton diagonalization, in a
see-saw context, one can assume a strong addi-
tional breaking of Le −Lµ −Lτ from soft terms
in the MRR Majorana mass matrix [15]. Since
νR’s are gauge singlets and thus essentially un-
coupled, a large breaking in MRR does not feed-
back in other sectors of the lagrangian. In this
way one can obtain realistic values for θ12 and
for all other masses and mixings, in particular
also with a small θ13.

d) Normal hierarchy. Particularly interesting are
models with 23 determinant suppressed by see-
saw [1]: in the 23 sector one needs relatively
large mass splittings to fit the small value of r
but nearly maximal mixing. This can be ob-
tained if the 23 sub-determinant is suppressed
by some dynamical trick. Typical examples are
lopsided models with large off diagonal term in
the Dirac matrices of charged leptons and/or
neutrinos (in minimal SU(5) the d-quark and
charged lepton mass matrices are one the trans-
posed of the other, so that large left-handed mix-
ings for charged leptons correspond to large un-
observable right-handed mixings for d-quarks).
Another class of typical examples is the domi-
nance in the see-saw formula of a small eigen-
value in MRR, the right-handed Majorana neu-
trino mass matrix. When the 23 determinant
suppression is implemented in a 33 context, nor-
mally θ13 is not protected from contributions
that vanish with the 23 determinant, hence with
r.

The fact that some neutrino mixing angles are large
and even nearly maximal, while surprising at the start,
was eventually found to be well compatible with a
unified picture of quark and lepton masses within

GUTs. The symmetry group at MGUT could be ei-
ther (SUSY) SU(5) or SO(10) or a larger group. For
example, normal models based on anarchy, semian-
archy, inverted hierarchy or normal hierarchy can all
be naturally implemented by simple assignments of
U(1)F horizontal charges in a semiquantitative unified
description of all quark and lepton masses in SUSY
SU(5)× U(1)F. Actually, in this context, if one adopts
a statistical criterium, hierarchical models appear to
be preferred over anarchy and among them normal
hierarchy with see-saw appears the most likely [16].

In conclusion we expect that experiment will even-
tually find that θ13 is not too small and that θ23 is
sizably not maximal. But if, on the contrary, either
θ13 very small or θ23 very close to maximal will emerge
from experiment or both, then theory will need to cope
with this fact. Normal models have been extensively
discussed in the literature [1], so we concentrate here
on examples of exceptional models.

IV. TRI-BIMAXIMAL MIXING

Here we want to discuss some particular exceptional
models where both θ13 and θ23 − π/4 exactly vanish
(more precisely, they vanish in a suitable limit, with
correction terms that can be made negligibly small)

and, in addition, s12 ∼ 1/
√

3, a value which is in very
good agreement with present data. This is the so-
called tri-bimaximal or Harrison-Perkins-Scott mixing
pattern (HPS) [17], with the entries in the second col-

umn all equal to 1/
√

3 in absolute value. Here we
adopt the following phase convention:

UHPS =

















√

2

3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

















. (8)

In the HPS scheme tan2 θ12 = 0.5, to be compared
with the latest experimental determination in Table
1: tan2 θ12 = 0.45+0.07

−0.04 (at 1σ). The challenge is to
find natural and appealing schemes that lead to this
matrix with good accuracy. Clearly, in a natural real-
ization of this model, a very constraining and predic-
tive dynamics must be underlying. It is interesting to
explore particular structures giving rise to this very
special set of models in a natural way. In this case
we have a maximum of ”order” implying special val-
ues for all mixing angles. Interesting ideas on how to
obtain the HPS mixing matrix have been discussed in
refs. [17], [18], [19]. Some attractive models are based
on the discrete symmetry A4, which appears as par-
ticularly suitable for the purpose, and were presented
in ref. [20],[21],[22], [23],[24].
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The HPS mixing matrix suggests that mixing an-
gles are independent of mass ratios (while for quark
mixings relations like λ2

C ∼ md/ms are typical). In
fact in the basis where charged lepton masses are di-
agonal, the effective neutrino mass matrix in the HPS
case is given by mν = UHPSdiag(m1, m2, m3)U

T
HPS:

mν =
[m3

2
M3 +

m2

3
M2 +

m1

6
M1

]

. (9)

where:

M3 =

(

0 0 0
0 1 −1
0 −1 1

)

, (10)

M2 =

(

1 1 1
1 1 1
1 1 1

)

, (11)

M1 =

(

4 −2 −2
−2 1 1
−2 1 1

)

. (12)

The eigenvalues of mν are m1, m2, m3 with eigenvec-
tors (−2, 1, 1)/

√
6, (1, 1, 1)/

√
3 and (0, 1,−1)/

√
2, re-

spectively. In general, disregarding possible Majorana
phases, there are six parameters in a real symmetric
matrix like mν : here only three are left after the val-
ues of the three mixing angles have been fixed à la
HPS. For a hierarchical spectrum m3 >> m2 >> m1,
m2

3 ∼ ∆m2
atm, m2

2/m2
3 ∼ ∆m2

sol/∆m2
atm and m1

could be negligible. But also degenerate masses and
inverse hierarchy can be reproduced: for example, by
taking m3 = −m2 = m1 we have a degenerate model,
while for m1 = −m2 and m3 = 0 an inverse hierar-
chy case is realized (stability under renormalization
group running strongly prefers opposite signs for the
first and the second eigenvalue which are related to
solar oscillations and have the smallest mass squared
splitting). From the general expression of the eigen-
vectors one immediately sees that this mass matrix,
independent of the values of mi, leads to the HPS
mixing matrix.

It is interesting to recall that the most general mass
matrix, in the basis where charged leptons are diago-
nal, that corresponds to θ13 = 0 and θ23 maximal is
of the form [25]:

m =

(

x y y
y z w
y w z

)

, (13)

Note that this matrix is symmetric under 2-3 or µ− τ
exchange. It is however not easy to make a model
where the µ − τ applies to the whole lepton sector
[26]. Imposing the symmetry on lT mν l does not work
because the Dirac mass term lcmDl then produces
a charged lepton mixing that completely spoils θ23

maximal. For example, in the model [27], the µ − τ
symmetry is badly broken in the charged lepton mass
sector and, as a result, for parameter choices that fit
the masses, θ23 is not necessarily close to maximal
and θ13 is not too small: finally the model looks like
a ”normal” model! Similarly a symmetry νµR − ντR

in the RH neutrino sector does not lead to a µ − τ
symmetric neutrino mass after see-saw. A more elab-
orate broken symmetry is needed, like a set of discrete
broken symmetries that make the charged lepton mass
matrix diagonal and, at the same time, the Dirac neu-
trino mass matrix diagonal and µ − τ symmetric and
finally the permutational 2−3 symmetry is in the RR
Majorana mass matrix. Thus the idea of a ”simple”
µ − τ symmetry ends up with leading to complicated
models.

For θ13 = 0 there is no CP violation, so that, dis-
regarding Majorana phases, we can restrict our con-
sideration to real parameters. There are four of them
in eq.(13) which correspond to three mass eigenvalues
and one remaining mixing angle, θ12. In particular,
θ12 is given by:

sin2 2θ12 =
8y2

(x − w − z)2 + 8y2
(14)

In the HPS case θ12 is also fixed and an additional
parameter, for example x, can be eliminated, leading
to:

m =

(

z + w − y y y
y z w
y w z

)

, (15)

It is easy to see that the HPS mass matrix in eqs.(9-
12) is indeed of the form in eq.(15).

In the next sections we will present models of tri-
bimaximal mixing based on the A4 group. We first
introduce A4 and its representations and then we show
that this group is particularly suited to the problem.

V. THE A4 GROUP

A4 is the group of the even permutations of 4 ob-
jects. it has 4!/2=12 elements. Geometrically, it can
be seen as the invariance group of a tethraedron (the
odd permutations, for example the exchange of two
vertices, cannot be obtained by moving a rigid solid).
Let us denote a generic permutation (1, 2, 3, 4) →
(n1, n2, n3, n4) simply by (n1n2n3n4). A4 can be gen-
erated by two basic permutations S and T given by
S = (4321) and T = (2314). One checks immediately
that:

S2 = T 3 = (ST )3 = 1 (16)

This is called a ”presentation” of the group. The 12
even permutations belong to 4 equivalence classes (h

IPM-LHP06-sch
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TABLE II: Characters of A4

Class χ1 χ1
′

χ1” χ3

C1 1 1 1 3

C2 1 ω ω2 0

C3 1 ω2 ω 0

C4 1 1 1 -1

and k belong to the same class if there is a g in the
group such that ghg−1 = k) and are generated from
S and T as follows:

C1 : I = (1234) (17)

C2 : T = (2314), ST = (4132),

TS = (3241), STS = (1423)

C3 : T 2 = (3124), ST 2 = (4213),

T 2S = (2431), TST = (1342)

C4 : S = (4321), T 2ST = (3412), TST 2 = (2143)

Note that, except for the identity I which always
forms an equivalence class in itself, the other classes
are according to the powers of T (in C4 S could as
well be seen as ST 3).

In a finite group the squared dimensions of the in-
equivalent irreducible representations add up to N ,
the number of transformations in the group (N = 12
in A4). A4 has four inequivalent representations:
three of dimension one, 1, 1′ and 1” and one of dimen-
sion 3. It is immediate to see that the one-dimensional
unitary representations are obtained by:

1 S = 1 T = 1 (18)

1′ S = 1 T = ei2π/3 ≡ ω

1′′ S = 1 T = ei4π/3 ≡ ω2

Note that ω = −1/2+
√

3/2 is the cubic root of 1 and
satisfies ω2 = ω∗, 1 + ω + ω2 = 0.

The three-dimensional unitary representation, in a
basis where the element S is diagonal, is built up from:

S =

(

1 0 0
0 −1 0
0 0 −1

)

, T =

(

0 1 0
0 0 1
1 0 0

)

. (19)

The characters of a group χR
g are defined, for each

element g, as the trace of the matrix that maps the
element in a given representation R. It is easy to see
that equivalent representations have the same char-
acters and that characters have the same value for
all elements in an equivalence class. Characters sat-
isfy

∑

g χR
g χS∗

g = NδRS . Also, for each element h,
the character of h in a direct product of representa-
tions is the product of the characters: χR⊗S

h = χR
h χS

h

and also is equal to the sum of the characters in
each representation that appears in the decomposi-
tion of R ⊗ S. The character table of A4 is given
in Table II [20]. From this Table one derives that
indeed there are no more inequivalent irreducible rep-
resentations other than 1, 1′, 1” and 3. Also, the
multiplication rules are clear: the product of two 3
gives 3 × 3 = 1 + 1′ + 1′′ + 3 + 3 and 1′ × 1′ = 1′′,
1′ × 1′′ = 1, 1′′ × 1′′ = 1′ etc. If 3 ∼ (a1, a2, a3) is
a triplet transforming by the matrices in eq.(19) we
have that under S: S(a1, a2, a3)

t = (a1,−a2,−a3)
t

(here the upper index t indicates transposition) and
under T : T (a1, a2, a3)

t = (a2, a3, a1)
t. Then, from

two such triplets 3a ∼ (a1, a2, a3), 3b ∼ (b1, b2, b3) the
irreducible representations obtained from their prod-
uct are:

1 = a1b1 + a2b2 + a3b3 (20)

1′ = a1b1 + ω2a2b2 + ωa3b3 (21)

1” = a1b1 + ωa2b2 + ω2a3b3 (22)

3 ∼ (a2b3, a3b1, a1b2) (23)

3 ∼ (a3b2, a1b3, a2b1) (24)

In fact, take for example the expression for 1” =
a1b1 + ωa2b2 + ω2a3b3. Under S it is invariant and
under T it goes into a2b2+ωa3b3+ω2a1b1 = ω2[a1b1+
ωa2b2 + ω2a3b3] which is exactly the transformation
corresponding to 1”.

In eq.(19) we have the representation 3 in a basis
where S is diagonal. It is interesting to go to a ba-
sis where instead it is T which is diagonal. This is
obtained through the unitary transformation:

T ′ = V TV † =

(

1 0 0
0 ω 0
0 0 ω2

)

, (25)

S′ = V SV † =
1

3

(−1 2 2
2 −1 2
2 2 −1

)

. (26)

where:

V =
1√
3

(

1 1 1
1 ω2 ω
1 ω ω2

)

. (27)

The matrix V is special in that it is a 3x3 unitary
matrix with all entries of unit absolute value. It is
interesting that this matrix was proposed long ago as
a possible mixing matrix for neutrinos [28]. We shall
see in the following that the matrix V appears in A4
models as the unitary transformation that diagonal-
izes the charged lepton mass matrix .
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An obvious representation of A4 is obtained by con-
sidering the 4x4 matrices that directly realize each
permutation. For S = (4321) and T = (2314) we
have:

S4 =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, (28)

T4 =







0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1






. (29)

The matrices S4 and T4 satisfy the relations (16),
thus providing a representation of A4. Since the only
irreducible representations of A4 are a triplet and
three singlets, the 4x4 representation described by S4

and T4 is not irreducible. It decomposes into the sum
of the invariant singlet plus the triplet representation.
This decomposition is realized by the unitary matrix
U given by:

U =
1

2







+1 +1 +1 +1
−1 +1 +1 −1
+1 −1 +1 −1
+1 +1 −1 −1






. (30)

This matrix maps S4 and T4 into matrices that are
block-diagonal:

US4U
† =











1 0

0 S











, UT4U
† =











1 0

0 T











,

(31)
where S and T are the generators of the three-
dimensional representation in eq.(19).

There is an interesting relation [24] between the A4

model considered so far and the modular group. This
relation could possibly be relevant to understand the
origin of the A4 symmetry from a more fundamen-
tal layer of the theory. The modular group Γ is the
group of linear fractional transformations acting on a
complex variable z:

z → az + b

cz + d
, ad − bc = 1 , (32)

where a, b, c, d are integers. There are infinite elements
in Γ, but all of them can be generated by the two
transformations:

s : z → −1

z
, t : z → z + 1 , (33)

The transformations s and t in (33) satisfy the rela-
tions

s2 = (st)3 = 1 (34)

and, conversely, these relations provide an abstract
characterization of the modular group. Since the re-
lations (16) are a particular case of the more general
constraint (34), it is clear that A4 is a very small sub-
group of the modular group and that the A4 represen-
tations discussed above are also representations of the
modular group. In string theory the transformations
(33) operate in many different contexts. For instance
the role of the complex variable z can be played by a
field, whose VEV can be related to a physical quantity
like a compactification radius or a coupling constant.
In that case s in eq. (33) represents a duality transfor-
mation and t in eq. (33) represent the transformation
associated to an ”axionic” symmetry.

VI. APPLYING A4 TO LEPTON MASSES

AND MIXINGS

A typical A4 model works as follows [23], [24]. One
assigns leptons to the four inequivalent representa-
tions of A4: left-handed lepton doublets l transform
as a triplet 3, while the right-handed charged leptons
ec, µc and τc transform as 1, 1′ and 1′′, respectively.
At this stage we do not introduce RH neutrinos, but
later we will discuss a see-saw realization. The flavour
symmetry is broken by two real triplets ϕ and ϕ′ and
by a real singlet ξ. These flavon fields are all gauge
singlets. We also need one or two ordinary SM Higgs
doublets hu,d, which we take invariant under A4. The
Yukawa interactions in the lepton sector read:

LY = yee
c(ϕl) + yµµc(ϕl)′′ + yτ τc(ϕl)′ (35)

+ xaξ(ll) + xd(ϕ
′ll) + h.c. + ...

In our notation, (33) transforms as 1, (33)′ transforms
as 1′ and (33)′′ transforms as 1′′. Also, to keep our no-
tation compact, we use a two-component notation for
the fermion fields and we set to 1 the Higgs fields hu,d

and the cut-off scale Λ. For instance yee
c(ϕl) stands

for yee
c(ϕl)hd/Λ, xaξ(ll) stands for xaξ(lhulhu)/Λ2

and so on. The Lagrangian LY contains the lowest
order operators in an expansion in powers of 1/Λ.
Dots stand for higher dimensional operators that will
be discussed later. Some terms allowed by the flavour
symmetry, such as the terms obtained by the exchange
ϕ′ ↔ ϕ, or the term (ll) are missing in LY . Their ab-
sence is crucial and, in each version of A4 models,
is motivated by additional symmetries. For example
(ll), being of lower dimension with respect to (ϕ′ll),
would be the dominant component, proportional to
the identity, of the neutrino mass matrix. In addition
to that, the presence of the singlet flavon ξ plays an
important role in making the VEV directions of ϕ and
ϕ′ different.

For the model to work it is essential that the fields
ϕ′, ϕ and ξ develop a VEV along the directions:

〈ϕ′〉 = (v′, 0, 0)
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〈ϕ〉 = (v, v, v)

〈ξ〉 = u . (36)

A crucial part of all serious A4 models is the dynam-
ical generation of this alignment in a natural way.
If the alignment is realized, at the leading order of
the 1/Λ expansion, the mass matrices ml and mν for
charged leptons and neutrinos are given by:

ml = vd

v

Λ







ye ye ye

yµ yµω2 yµω

yτ yτω yτω2






, (37)

mν =
v2

u

Λ







a 0 0

0 a d

0 d a






, (38)

where

a ≡ xa

u

Λ
, d ≡ xd

v′

Λ
. (39)

Charged leptons are diagonalized by the matrix

l → V l =
1√
3







1 1 1

1 ω2 ω

1 ω ω2






l , (40)

This matrix was already introduced in eq.(27) as the
unitary transformation between the S-diagonal to the
T -diagonal 3x3 representation of A4. In fact, in
this model, the S-diagonal basis is the Lagrangian
basis and the T diagonal basis is that of diagonal
charged leptons. The great virtue of A4 is to im-
mediately produce the special unitary matrix V as
the diagonalizing matrix of charged leptons and also
to allow a singlet made up of three triplets, (φ′ll) =
φ′

1l2l3 + φ′
2l3l1 + φ′

3l1l2 which leads, for the alignment
in eq. (36), to the right neutrino mass matrix to ob-
tain the HPS mixing matrix.

The charged fermion masses are given by:

me =
√

3yevd

v

Λ
, mµ =

√
3yµvd

v

Λ
,

mτ =
√

3yτvd

v

Λ
. (41)

We can easily obtain in a a natural way the observed
hierarchy among me, mµ and mτ by introducing an
additional U(1)F flavour symmetry under which only
the right-handed lepton sector is charged. We assign
F-charges 0, 2 and 3÷4 to τc, µc and ec, respectively.
By assuming that a flavon θ, carrying a negative unit
of F, acquires a VEV 〈θ〉/Λ ≡ λ < 1, the Yukawa
couplings become field dependent quantities ye,µ,τ =
ye,µ,τ (θ) and we have

yτ ≈ O(1) , yµ ≈ O(λ2) , ye ≈ O(λ3÷4) .
(42)

In the flavour basis the neutrino mass matrix reads
[notice that the change of basis induced by V , be-
cause of the Majorana nature of neutrinos, will in gen-
eral change (compare eq.(38) with eq.(43)) the relative
phases of the eigenvalues of mν ]:

mν =
v2

u

Λ







a + 2d/3 −d/3 −d/3

−d/3 2d/3 a − d/3

−d/3 a − d/3 2d/3






, (43)

and is diagonalized by the transformation:

UT mνU =
v2

u

Λ
diag(a + d, a,−a + d) , (44)

with

U =







√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 +1/
√

2






. (45)

The leading order predictions are tan2 θ23 = 1,
tan2 θ12 = 0.5 and θ13 = 0. The neutrino masses
are m1 = a + d, m2 = a and m3 = −a + d, in
units of v2

u/Λ. We can express |a|, |d| in terms of
r ≡ ∆m2

sol/∆m2
atm ≡ (|m2|2 − |m1|2)/|m3|2 − |m1|2),

∆m2
atm ≡ |m3|2−|m1|2 and cos∆, ∆ being the phase

difference between the complex numbers a and d:

√
2|a|v

2
u

Λ
=

−
√

∆m2
atm

2 cos∆
√

1 − 2r
√

2|d|v
2
u

Λ
=

√
1 − 2r

√

∆m2
atm . (46)

To satisfy these relations a moderate tuning is needed
in this model. Due to the absence of (ll) in eq. (35)
which we will motivate in the next section, a and d
are of the same order in 1/Λ, see eq. (39). Therefore
we expect that |a| and |d| are close to each other and,
to satisfy eqs. (46), cos∆ should be negative and of
order one. We obtain:

|m1|2 =

[

−r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm

|m2|2 =
1

8 cos2 ∆(1 − 2r)
∆m2

atm

|m3|2 =

[

1 − r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm (47)

If cos∆ = −1, we have a neutrino spectrum close to
hierarchical:

|m3| ≈ 0.053 eV , |m1| ≈ |m2| ≈ 0.017 eV .
(48)

In this case the sum of neutrino masses is about 0.087
eV. If cos∆ is accidentally small, the neutrino spec-
trum becomes degenerate. The value of |mee|, the
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parameter characterizing the violation of total lepton
number in neutrinoless double beta decay, is given by:

|mee|2 =

[

−1 + 4r

9
+

1

8 cos2 ∆(1 − 2r)

]

∆m2
atm .

(49)
For cos∆ = −1 we get |mee| ≈ 0.005 eV, at the upper
edge of the range allowed for normal hierarchy, but
unfortunately too small to be detected in a near fu-
ture. Independently from the value of the unknown
phase ∆ we get the relation:

|m3|2 = |mee|2 +
10

9
∆m2

atm

(

1 − r

2

)

, (50)

which is a prediction of this model.

VII. A4 MODEL WITH AN EXTRA

DIMENSION

One of the problems we should solve in the quest for
the correct alignment is that of keeping neutrino and
charged lepton sectors separate, allowing ϕ and ϕ′ to
take different VEVs and also forbidding the exchange
of one with the other in interaction terms. One pos-
sibility is that this separation is achieved by means
of an extra spatial dimension. The space-time is as-
sumed to be five-dimensional, the product of the four-
dimensional Minkowski space-time times an interval
going from y = 0 to y = L. At y = 0 and y = L
the space-time has two four-dimensional boundaries,
called ”branes”. The idea is that matter SU(2) sin-
glets such as ec, µc, τc are localized at y = 0, while
SU(2) doublets, such as l are localized at y = L (see
Fig.1). Neutrino masses arise from local operators at
y = L. Charged lepton masses are produced by non-
local effects involving both branes. The simplest pos-
sibility is to introduce a bulk fermion, depending on all
space-time coordinates, that interacts with ec, µc, τc

at y = 0 and with l at y = L. The exchange of
such a fermion can provide the desired non-local cou-
pling between right-handed and left-handed ordinary
fermions. Finally, assuming that ϕ and (ϕ′, ξ) are lo-
calized respectively at y = 0 and y = L, one obtains
a natural separation between the two sectors.

Such a separation also greatly simplifies the vacuum
alignment problem. One can determine the minima
of two scalar potentials V0 and VL, depending only,
respectively, on ϕ and (ϕ′, ξ). Indeed, it is shown

that there are whole regions of the parameter space
where V0(ϕ) and VL(ϕ′, ξ) have the minima given in
eq. (36). Notice that in the present setup dealing
with a discrete symmetry such as A4 provides a great
advantage as far as the alignment problem is con-
cerned. A continuous flavour symmetry such as, for
instance, SO(3) would need some extra structure to
achieve the desired alignment. Indeed the potential

 0  y L

e c

µc

τ c

φ

l e

l µ

l τ

φ ξ,

hu
F1 F2

_

bulk

φ

φ

φ

1

2

3

φ1

φ2

φ3

,

,

,

hd

FIG. 1: Fifth dimension and localization of scalar and
fermion fields. The symmetry breaking sector includes the
A4 triplets ϕ and ϕ′, localized at the opposite ends of the
interval. Their VEVs are dynamically aligned along the
directions shown at the top of the figure.

energy
∫

d4x[V0(ϕ)+VL(ϕ′, ξ)] would be invariant un-
der a much bigger symmetry, SO(3)0× SO(3)L, with
the SO(3)0 acting on ϕ and leaving (ϕ′, ξ) invariant
and vice-versa for SO(3)L. This symmetry would re-
move any alignment between the VEVs of ϕ and those
of (ϕ′, ξ). If, for instance, (36) is minimum of the po-
tential energy, then any other configuration obtained
by acting on (36) with SO(3)0× SO(3)L would also be
a minimum and the relative orientation between the
two sets of VEVs would be completely undetermined.
A discrete symmetry such as A4 has not this problem,
because applying separate A4 transformation on the
minimum solutions on each brane a finite number of
degenerate vacua is obtained which can be shown to
correspond to the same physics apart from redefini-
tions of fields and parameters.

The Lagrangian in 5 dimensions includes a bulk
fermion field F (x, y) = (F1, F2), singlet under SU(2)
with hypercharge Y = −1 and transforming as a
triplet of A4. One also imposes a discrete Z4 sym-
metry under which (f c, l, F, ϕ, ϕ′, ξ) transform into
(−if c, il, iF, ϕ,−ϕ′,−ξ). The complete action is

S =

∫

d4xdy

{[

iF1σ
µ∂µF 1 + iF2σ

µ∂µF 2 +
1

2
(F2∂yF1 − ∂yF2F1 + h.c.)

]

− M(F1F2 + F 1F 2)

+ V0(ϕ)δ(y) + VL(ϕ′, ξ)δ(y − L)
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+ [Yee
c(ϕF1) + Yµµc(ϕF1)

′′ + Yτ τc(ϕF1)
′ + h.c.] δ(y)

+
[xa

Λ2
ξ(ll)huhu +

xd

Λ2
(ϕ′ll)huhu + YL(F2l)hd + h.c.

]

δ(y − L)
}

+ ... , (51)

where the constants Y have mass dimension -1/2.
The first two lines represent the five-dimensional ki-
netic and mass terms of the bulk field F . The third
line is the scalar potential and the remaining terms
are the lowest order invariant operators localized at
the two branes. Dots stand for the kinetic terms of
f c, l, ϕ, ϕ′, ξ and for higher-dimensional operators.

The potential energy is given, at lowest order by:

U =

∫

d4x [V0(ϕ) + VL(ϕ′, ξ)] , (52)

and, under the conditions discussed above, is mini-
mized by eqs. (36) [23]. It is clear that at lowest
order ϕ and (ϕ′, ξ) are strictly separated.

We now discuss the effects of the tree-level exchange
of F . To this purpose we consider the equations of
motion for (F1, F2):

iσµ∂µF 2 + ∂yF1 − MF1 = 0

iσµ∂µF 1 − ∂yF2 − MF2 = 0 (53)

If M is large and positive, we can prove that all the
modes contained in (F1, F2) become heavy, at a scale
greater than or comparable to 1/L, which we assume
to be much higher than the electroweak scale. If we
are only interested in energies much lower than 1/L,
we can solve the equations of motion in the static ap-
proximation, by neglecting the four-dimensional ki-
netic term:

F1(y) = F1(L)eM(y−L)

F2(y) = F2(0)e−My . (54)

These equations must be supplemented with appropri-
ate boundary conditions, which can be identified by
varying the action S with respect the fields (F1, F2).
As a final result, as shown in detail in ref. [23], in
lowest order approximation the Lagrangian LY of eq.
(35) is reproduced and the general discussion applies.

We also recall that, to account for the observed hier-
archy of the charged lepton masses, one has to include
an additional U(1) flavour symmetry. Therefore, in
the present picture, the quantities Ye,µ,τ stand for:

Ye = Ỹe

(

θ

Λ

)4

, Yµ = Ỹµ

(

θ

Λ

)2

, Yτ = Ỹτ ,

(55)

where Ỹe,µ,τ are field-independent constants having
similar values. After spontaneous breaking of U(1),
the Yukawa couplings yf possess the desired hierarchy.

VIII. A4 MODEL WITH SUSY IN 4

DIMENSIONS

We now discuss an alternative supersymmetric so-
lution to the vacuum alignment problem [24]. In a
SUSY context, the right-hand side of eq. (35) should
be interpreted as the superpotential wl of the theory,
in the lepton sector:

wl = yee
c(ϕl) + yµµc(ϕl)” + yττc(ϕl)′ + (56)

+ (xaξ + x̃aξ̃)(ll) + xb(ϕ
′ll) + h.c. + ...

where dots stand for higher dimensional operators
and where we have also added an additional A4-
invariant singlet ξ̃. Such a singlet does not modify
the structure of the mass matrices discussed previ-
ously, but plays an important role in the vacuum
alignment mechanism. A key observation is that the
superpotential wl is invariant not only with respect
to the gauge symmetry SU(2)× U(1) and the flavour
symmetry U(1)F × A4, but also under a discrete Z3

symmetry and a continuous U(1)R symmetry under
which the fields transform as shown in the following
table.

Field l ec µc τc hu,d ϕ ϕ′ ξ ξ̃ ϕ0 ϕ′
0 ξ0

A4 3 1 1′ 1′′ 1 3 3 1 1 3 3 1

Z3 ω ω2 ω2 ω2 1 1 ω ω ω 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 0 2 2 2

We see that the Z3 symmetry explains the absence of
the term (ll) in wl: such a term transforms as ω2 un-
der Z3 and need to be compensated by the field ξ in
our construction. At the same time Z3 does not allow
the interchange between ϕ and ϕ′, which transform
differently under Z3. The singlets ξ and ξ̃ have the
same transformation properties under all symmetries
and, as we shall see, in a finite range of parameters,
the VEV of ξ̃ vanishes and does not contribute to neu-
trino masses. Charged leptons and neutrinos acquire
masses from two independent sets of fields. If the two
sets of fields develop VEVs according to the alignment
described in eq. (36), then the desired mass matrices
follow.

Finally, there is a continuous U(1)R symmetry that
contains the usual R-parity as a subgroup. Suitably
extended to the quark sector, this symmetry forbids
the unwanted dimension two and three terms in the
superpotential that violate baryon and lepton num-
ber at the renormalizable level. The U(1)R symmetry
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allows us to classify fields into three sectors. There
are “matter fields” such as the leptons l, ec, µc and
τc, which occur in the superpotential through bilinear
combinations. There is a “symmetry breaking sector”
including the higgs doublets hu,d and the flavons ϕ, ϕ′,

(ξ, ξ̃). Finally, there are “driving fields” such as ϕ0,
ϕ′

0 and ξ0 that allows to build a non-trivial scalar po-
tential in the symmetry breaking sector. Since driving
fields have R-charge equal to two, the superpotential
is linear in these fields.

The full superpotential of the model is

w = wl + wd (57)

where, at leading order in a 1/Λ expansion, wl is given
by eq. (56) and the “driving” term wd reads:

wd = M(ϕ0ϕ) + g(ϕ0ϕϕ)

+ g1(ϕ
′
0ϕ

′ϕ′) + g2ξ̃(ϕ
′
0ϕ

′) + g3ξ0(ϕ
′ϕ′)

+ g4ξ0ξ
2 + g5ξ0ξξ̃ + g6ξ0ξ̃

2 . (58)

At this level there is no fundamental distinction be-
tween the singlets ξ and ξ̃. Thus we are free to define
ξ̃ as the combination that couples to (ϕ′

0ϕ
′) in the su-

perpotential wd. We notice that at the leading order
there are no terms involving the Higgs fields hu,d. We
assume that the electroweak symmetry is broken by
some mechanism, such as radiative effects when SUSY
is broken. It is interesting that at the leading order
the electroweak scale does not mix with the poten-
tially large scales u, v and v′. The scalar potential is
given by:

V =
∑

i

∣

∣

∣

∣

∂w

∂φi

∣

∣

∣

∣

2

+ m2
i |φi|2 + ... (59)

where φi denote collectively all the scalar fields of the
theory, m2

i are soft masses and dots stand for D-terms
for the fields charged under the gauge group and pos-
sible additional soft breaking terms. Since mi are ex-
pected to be much smaller than the mass scales in-
volved in wd, it makes sense to minimize V in the su-
persymmetric limit and to account for soft breaking
effects subsequently. A detailed minimization analy-
sis, presented in ref.[24], shows the the desired align-
ment solution is indeed realized.

IX. CORRECTIONS TO THE LOWEST

APPROXIMATION

The results of the previous sections hold to first
approximation. Higher-dimensional operators, sup-
pressed by additional powers of the cut-off Λ, can be
added to the leading terms in the lagrangian. These
corrections have been classified and discussed in de-
tail in refs.[23], [24]. They are completely under con-
trol in our models and can be made negligibly small

without any fine-tuning: one only needs to assume
that the VEV’s are sufficiently smaller than the cutoff
Λ. Higher-order operators contribute corrections to
the charged lepton masses, to the neutrino mass ma-
trix and to the vacuum alignment. These corrections,
suppressed by powers of VEVs/Λ, with different expo-
nents in different versions of A4 models, affect all the
relevant observable with terms of the same order: s13,
s12, s23, r. If we require that the subleading terms do
not spoil the leading order picture, these deviations
should not be larger than about 0.05. This can be in-
ferred by the agreement of the HPS value of tan2 θ12

with the experimental value, from the present bound
on θ13 or from requiring that the corrections do not
exceed the measured value of r. In the SUSY model,
where the largest corrections are linear in VEVs/Λ
[24], this implies the bound

vS

Λ
≈ vT

Λ
≈ u

Λ
< 0.05 (60)

which does not look unreasonable, for example if
VEVs∼ MGUT and Λ ∼ MPlanck.

X. SEE-SAW REALIZATION

We can easily modify the previous model to imple-
ment the see-saw mechanism. We introduce conjugate
right-handed neutrino fields νc transforming as a
triplet of A4 and we modify the transformation law
of the other fields according to the following table:

Field νc ϕ′ ξ ξ̃ ϕ′
0 ξ0

A4 3 3 1 1 3 1

Z3 ω2 ω2 ω2 ω2 ω2 ω2

U(1)R 1 0 0 0 2 2

The superpotential becomes

w = wl + wd (61)

where the ‘driving’ part is unchanged, whereas wl is
now given by:

wl = yee
c(ϕl) + yµµc(ϕl)” + yττc(ϕl)′ + (62)

+ y(νcl) + (xAξ + x̃Aξ̃)(νcνc)

+ xB(ϕ′νcνc) + h.c. + ...

dots denoting higher-order contributions. The vac-
uum alignment proceeds exactly as discussed in sec-
tion 8 and also the charged lepton sector is unaffected
by the modifications. In the neutrino sector, after
electroweak and A4 symmetry breaking we have Dirac
and Majorana masses:

mD
ν = yvu1, M =







A 0 0

0 A B

0 B A






u , (63)
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where 1 is the unit 3×3 matrix and

A ≡ 2xA , B ≡ 2xB

vS

u
. (64)

The mass matrix for light neutrinos is mν =
(mD

ν )T M−1mD
ν with eigenvalues

m1 =
y2

A + B

v2
u

u
, m2 =

y2

A

v2
u

u
(65)

m3 =
y2

−A + B

v2
u

u
.

The mixing matrix is the HPS one, eq. (8). In the
presence of a see-saw mechanism both normal and in-
verted hierarchies in the neutrino mass spectrum can
be realized. If we call Φ the relative phase between the
complex number A and B, then cosΦ > −|B|/2|A|
is required to have |m2| > |m1|. In the interval
−|B|/2|A| < cosΦ ≤ 0, the spectrum is of inverted
hierarchy type, whereas in |B|/2|A| ≤ cosΦ ≤ 1 the
neutrino hierachy is of normal type. It is interesting
that this model is an example of model with inverse
hierarchy, realistic θ12 and θ23 and, at least in a first
approximation, θ13 = 0. The quantity |B|/2|A| can-
not be too large, otherwise the ratio r cannot be re-
produced. When |B| ≪ |A| the spectrum is quasi de-
generate. When |B| ≈ |A| we obtain the strongest hi-
erarchy. For instance, if B = −2A+z (|z| ≪ |A|, |B|),
we find the following spectrum:

|m1|2 ≈ ∆m2
atm(

9

8
+

1

12
r), (66)

|m2|2 ≈ ∆m2
atm(

9

8
+

13

12
r),

|m3|2 ≈ ∆m2
atm(

1

8
+

1

12
r).

When B = A + z (|z| ≪ |A|, |B|), we obtain:

|m1|2 ≈ ∆m2
atm(

1

3
r), (67)

|m2|2 ≈ ∆m2
atm(

4

3
r),

|m3|2 ≈ ∆m2
atm(1 − 1

3
r).

These results are affected by higher-order corrections
induced by non renormalizable operators with simi-
lar results as in the version with no see-saw. In con-
clusion, the symmetry structure of the model is fully
compatible with the see-saw mechanism.

XI. QUARKS

There are several possibilities to include quarks.
At first sight the most appealing one is to adopt for
quarks the same classification scheme under A4 that

we have used for leptons. Thus we tentatively as-
sume that left-handed quark doublets q transform as
a triplet 3, while the right-handed quarks (uc, dc),
(cc, sc) and (tc, bc) transform as 1, 1′ and 1”, respec-
tively. We can similarly extend to quarks the transfor-
mations of Z3 and U(1)R given for leptons in the table
of section 8. The superpotential for quarks reads:

wq = ydd
c(ϕq) + yss

c(ϕq)” + ybb
c(ϕq)′ (68)

+ yuuc(ϕq) + ycc
c(ϕq)” + ytt

c(ϕq)′ + h.c. + ...

It is interesting to note that such an extrapolation
to quarks leads to a diagonal CKM mixing matrix in
first approximation [20, 21, 24, 29]. In fact, start-
ing from eq. (68) and proceeding as described in de-
tail for the lepton sector, we see that the up quark
and down quark mass matrices are separately diago-
nal with mass eigenvalues which are left unspecified
by A4 and with a hierarchy that could be accomo-
dated by a suitable U(1)F set of charge assignments
for quarks. Thus the VCKM matrix is the identity in
leading order, providing a good first order approxima-
tion.

The problems come when we discuss non-leading
corrections. As seen in section 9, first-order correc-
tions to the lepton sector should be typically below
0.05, approximately the square of the Cabibbo angle.
Also, by inspecting these corrections more closely, we
see that, up to very small terms of order y2

u(d)/y2
t(b)

and y2
c(s)/y2

t(b), all corrections are the same in the up

and down sectors and therefore they almost exactly
cancel in the mixing matrix VCKM . We conclude
that, if one insists in adopting for quarks the same
flavour properties as for leptons, than new sources of
A4 breaking are needed in order to produce an accept-
able VCKM .

The A4 classification for quarks and leptons dis-
cussed in this section, which leads to an appealing
first approximation with VCKM ∼ 1 for quark mixing
and to UHPS for neutrino mixings, is not compatible
with A4 commuting with SU(5) or SO(10). In fact
for this to be true all particles in a representation of
SU(5) should have the same A4 classification. But, for
example, both the Q = (u, d)L LH quark doublet and
the RH charged leptons lc belong to the 10 of SU(5),
yet they have different A4 transformation properties.
In a recent paper [30] the possibility of classifying all
fermion multiplets as triplets was advanced. But the
crucial issues of the correct alignment and of repro-
ducing in a natural way the observed hierarchy of, for
example, the charged leptons were not addressed and
are difficult to realize in this case.

XII. CONCLUSION

In the last decade we have learnt a lot about neu-
trino masses and mixings. A list of important conclu-
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sions have been reached. Neutrinos are not all mass-
less but their masses are very small. Probably masses
are small because neutrinos are Majorana particles
with masses inversely proportional to the large scale
M of lepton number violation. It is quite remarkable
that M is empirically close to 1014−15GeV not far from
MGUT , so that neutrino masses fit well in the SUSY
GUT picture. Also out of equilibrium decays with CP
and L violation of heavy RH neutrinos can produce a
B-L asymmetry, then converted near the weak scale by
instantons into an amount of B asymmetry compati-
ble with observations (baryogenesis via leptogenesis)
[31]. It has been established that neutrinos are not a
significant component of dark matter in the Universe.
We have also understood there there is no contradic-
tion between large neutrino mixings and small quark
mixings, even in the context of GUTs.

This is a very impressive list of achievements. Com-
ing to a detailed analysis of neutrino masses and mix-
ings a very long collection of models have been formu-
lated over the years. With a continuous improvement
of the data and a progressive narrowing of the values
of the mixing angles most of the models have been
discarded by experiment. Still the missing elements in
the picture like, for example, the scale of the average
neutrino m2, the pattern of the spectrum (degenerate
or inverse or normal hierarchy) and the value of θ13

have left many different viable alternatives for mod-
els. It certainly is a reason of satisfaction that so much
has been learnt recently from experiments on neutrino

mixings. By now, besides the detailed knowledge of
the entries of the VCKM matrix we also have a reason-
able determination of the neutrino mixing matrix. It
is remarkable that neutrino and quark mixings have
such a different qualitative pattern. One could have
imagined that neutrinos would bring a decisive boost
towards the formulation of a comprehensive under-
standing of fermion masses and mixings. In reality it
is frustrating that no real illumination was sparked on
the problem of flavour. We can reproduce in many dif-
ferent ways the observations but we have not yet been
able to single out a unique and convincing baseline for
the understanding of fermion masses and mixings. In
spite of many interesting ideas and the formulation of
many elegant models, some of them presented in these
lectures, the mysteries of the flavour structure of the
three generations of fermions have not been much un-
veiled.
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