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On color confinement
Adriano Di Giacomo
Pisa University and INFN Sezione di Pisa , ITALY

The status of the theory of color confinemnt is discussed.

1. Introduction

Quarks and gluons are the constituents of hadrons
and the fundamental fields of the QCD Lagrangean.

LQCD = −
1

4
Tr[GµνG

µν ] + Σf ψ̄(iD/−mf )ψ (1)

Quarks can be detected by use of electroweak probes
at short distances. They have never been observed as
free particles. The experimental upper limits to the
existence of free quarks can be found in Particle Data
Group reports[1].

The upper limit to the ratio of the quark abundance
in nature nq to that of the nucleons np is

nq

np
≤ 10−27

to be compared with the expected value in the Stan-
dard Cosmological Model 10−12.

The inclusive cross section σp to produce a quark
or an antiquark has upper limit 10−40cm2 to be com-
pared with the value expected in the absence of con-
finement ≈ 10−25cm2.

A suppression factor of 10−15 can only have as a
natural explanation that nq = 0 and σq = 0 due to
some symmetry.

This phenomenon is called color confinement :
asymptotic particle in QCD are only colorless.

The obvious question is then: does QCD imply
color confinement, and, if so, by what mechanism?
What is the symmetry which produces confinement?

For the first time it was conjectured in ref[2] that
the Hagedorn limiting temperature [3] could in fact
correspond to a deconfining phase transition from
hadrons to a gas of quarks and gluons (the so called
Quark Gluon Plasma).

Experiments colliding heavy ions have been set up
at CERN and at Brookhaven to detect such transition.
It is not clear what would be the smoking-gun signal
for that transition and no clear statement can be done
up to now.

Virtual experiments, i.e. numerical simulations of
the theory on the lattice have instead demonstrated
the existence of a deconfining transition. Lattice
Montecarlo techniques produce a discretized approxi-
mant to the functional Feynman integral which defines
QCD . If the lattice spacing a is small compared to
hadronic scale λ and λ is in turn much smaller than
the lattice size La the numerical estimate can be a
good approximation to the functional integral.

Also QCD at finite temperature can be simulated

by similar techniques. The partition function Tr[e−
H
T ]

is equal to the Feynman integral compactified from 0
to 1

T
in the time direction, with periodic boundary

conditions in time for bosonic fields, antiperiodic for
fermions. In formulae

Tr[e−
H
T ] =

∫
[dAµ][dψ̄][dψ]e

∫
d3x

∫ 1

T

0
L(A,ψ̄,ψ)

(2)

On lattice

T =
1

aNt
(3)

with a = a(β,m) the lattice spacing, β = 2N
g2

the usual

lattice variable. The integral in Eq(1) is computed by
simulating on a lattice with time extension Lt and
space extension L3

s with Ls ≫ Lt .
Renormalization group arguments give

a ∝
1

ΛL
e

β

2b0 (4)

with

b0 = −
1

(4π)2
[
11

3
N −

2

3
Nf ] (5)

the (negative) coefficient of the lowest order term of
the β function.

The negative sign means asymptotic freedom.
ΛL is the physical scale of the lattice regularized

QCD.
T is given by Eq(3)

T =
ΛL
Lt
e

β

2|b0| (6)

High T corresponds to small g2 (order) , low T to large
g2 (disorder) , the opposite of what usually happens
to ordinary systems in statistical mechanics.

This peculiar fact naturally brings us to
Duality[4][5].

2. Duality

Duality is a deep concept in statistical mechanics
and field theory. It applies to systems in (d + 1) di-
mensions which can have topologically non trivial ex-
citations in d dimensions.

These systems admit two complementary descrip-
tions.
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1) A direct description in terms of local fields Φ(x),
with 〈Φ〉 the order parameters, in which the topolog-
ical excitations µ are non local . This description is
convenient in the weak coupling regime g < 1

2) A dual description in which the topological ex-
citations µ are local fields and 〈µ〉 the (dis)order pa-
rameters. In this description the original Φ fields are
non local. The dual coupling being gD ≈ 1

g
this de-

scription is convenient at large g (strong coupling).
Duality maps the strong coupling regime of the direct
description into the weak coupling of the dual and
viceversa.

The prototype system for duality is the 2d Ising
model in which the field is a dicotomic variable σ = ±1
defined on the sites of a square lattice. The La-
grangean is the sum on nearest neighbors of a fer-
romagnetic coupling S = −Σij

J
T
σiσj . Putting g = T

J

the partition function is Z[g, σ] = ΣeS .
Identifying one of the coordinate axes ,x, with

space, the other one t with time the topological ex-
citations µ are kinks and anti-kinks : a kink µ(x̄, t) is
a spatial configuration at time t with σ = −1 at he
sites x < x̄ , x = +1 at x ≥ x̄ , an anti-kink has op-
posite signs. It is easily shown that also the operator
µ which creates a kink has eigenvalues ±1.

Duality for this model is the equality [5]

Z[β, σ] = Z[β′, µ] (7)

where β′ is defined by the equation

sinh(2β′) =
1

sinh(2β)
(8)

Eq’s(7) and(8) summarize what we have said about
duality.

Since in QCD the low temperature phase is disor-
dered, it is natural to look for dual variables µ and
for their symmetry , which should be responsible for
confinement.

A model example is N = 2 SUSY QCD [6] in which
dual excitations are known to be monopoles.

Also in ordinary QCD monopoles could be the dual
excitations [7] [8], and dual superconductivity of the
vacuum the mechanism of confinement.

Here the word dual means that the role of elec-
tric and magnetic fields are exchanged with respect
to ordinary superconductors : monopoles instead of
electric charges condense and Meissner effect acts on
electric field instead of magnetic.

The pictorial idea is that the chromoelectric field
acting between a qq̄ pair is channeled into an
Abrikosov flux tube by dual Meissner effect so that the
energy is proportional to the distance , which means
confinement.

In this mechanism the deconfining phase transition
is an order-disorder transition from a state with 〈µ〉 6=
0 to a state with 〈µ〉 = 0,i.e. from superconducting to
normal.

3. Lattice QCD

The only practical known way to study the large
distance behavior of QCD , which is related to con-
finement, is to simulate numerically the theory on a
lattice[9].

The first question is how to detect confinement and
deconfinement on the lattice. The question is non triv-
ial and parallels the same question in experiments. In
the absence of quarks (the so called quenched theory)
, i.e. in pure gauge theory this question has a clear
answer. In the presence of quarks this is not the case
any more.

In quenched theory an order parameter can be de-
fined [? ] which is the vacuum expectation value of
the parallel transport along the time direction across
the lattice, the Polyakov line L(~x), which is gauge in-
variant because of periodic boundary conditions.

L(~x) = Tr[Pe
i
∫ 1

T

0
A0(~x,t)dt] (9)

It can be proved that 〈L〉 = e−
µq

T with µq the chem-
ical potential of a quark. In the confined phase µq is
infinite and 〈L〉 = 0. This can be seen alternatively
as follows.

Let D(x) ≡ 〈L†(~x)L(~0)〉 be the Polyakov loop cor-
relator. At large distances by cluster property

D(x) ≈x→∞ Ce−
σx
T + |〈L〉|2 (10)

On the other hand one has for the potential V (x)

V (x) = −T lnD(x) (11)

Together with Eq(10) this gives

V (x) ≈x→∞ σx (12)

if 〈L〉 = 0 and

V (x) ≈x→∞ const (13)

if 〈L〉 6= 0.
〈 L〉 is an order parameter for confinement, the cen-

ter of the group Z3 is the corresponding symmetry.
A standard finite size scaling analysis of its suscep-

tibility χ =
∫
d3xD(x) allows to establish that the

transition is weak first order[11]. The transition tem-
perature it T ≈ 270Mev.

An alternative order parameter is the vacuum ex-
pectation value of an operator µ which creates a
monopole [12][13][14][16]. If the mechanism of dual
superconductivity is at work, 〈µ〉 6= 0 means dual su-
perconductivity, 〈µ〉 = 0 normal vacuum.

If dual superconductivity is the correct mechanism
of confinement the behavior of this order parameter
should coincide with that of the Polyakov line.

In that case one expects 〈µ〉 6= 0 for T < Tc, 〈µ〉 = 0
for T > Tc. 〈µ〉 is the ratio of two partition functions
with the same Boltzman factor β = 2N

g2
[17].
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To detect the phase transition one must go to in-
finite volume. The dependence on the volume L3

s of
susceptibilities is determined by the critical indexes,
which in turn identify the order of the transition and
its universality class.

Instead of the order parameter 〈µ〉 itself it proves
convenient to use the related susceptibility
ρ ≡ ∂

∂β
ln(µ) .

One has, due to the boundary value 〈µ〉 = 1 at
β = 0

〈µ〉 = e

∫
β

0
dβρ(β

(14)

For T > Tc we find [16][17]

ρ ≈ −|c|Ls + c′ (15)

which by use of Eq(14) means in the infinite volume
limit 〈µ〉 → 0 (normal vacuum).

For T < Tc ρ → finite limit as Ls → ∞, which,
again by use of Eq(14) implies 〈µ〉 6= 0 (dual super-
conducting vacuum).

For T ≈ Tc we expect scaling , since the correlation
length goes large compared to lattice spacing.

Dimensional analysis gives

〈µ〉 ≈ Lγsf(
a

λ
,
λ

Ls
) (16)

with γ a possible anomalous dimension, and λ the cor-
relation length of the order parameter. Approaching
Tc, when τ ≡ (1 − T

Tc
) → 0, λ diverges as

λ ∝ τ−ν (17)

so that a
λ
≈ 0 can be neglected. The variable λ

Ls
can

be traded with τL
1

ν
s by use of Eq.(17) so that

〈µ〉 ≈ Lγsg(0, τL
1

ν
s ) (18)

or

ρ ≈ L
1

ν
s F (τL

1

ν
s ) (19)

A best fit to the data gives for gauge group SU(3)
ν = 1

3 which corresponds to first order transition, in
agreement with the analysis done with the Polyakov
line quoted above. This indicates that dual supercon-
ductivity can be the mechanism of color confinement.

Including dynamical quarks explicitly breaks Z3

symmetry and the Polyakov line is not an order pa-
rameter any more.

Moreover there is the phenomenon known as string
breaking: instead of increasing the potential energy
when pulling apart a static q−q̄ pair the system prefers
to create pairs in the form of pions, so that there is
no string tension but there can be confinement.

The situation is depicted schematically in Fig.1 for
two quark flavors of equal mass m. At large values
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Figure 1: The phase diagram of Nf = 2QCD. The

transition line is defined by the maxima of the specific

heat and of the susceptibility of the chiral order

parameter. m is the quark mass, µ the baryon chemical

potential.

of the mass quarks decouple and the theory goes to
quenched . There the phase transition is first order
and well understood.

At m = 0 there is a chiral phase transition where
the spontaneously broken chiral symmetry is restored
: 〈ψ̄ψ〉 is the order parameter. However at non zero
values of m chiral symmetry is explicitely broken.

The transition line in the figure is defined by the
maxima of a number of susceptibilities ( the spe-
cific heat CV , the susceptibility of the Polyakov line,
the susceptibility of the chiral order parameter 〈ψ̄ψ〉)
which all coincide within statistical errors.

The region above the line is conventionally called
”deconfined” , the region below it ”confined”.

The transition can be explored by use of the dual
superconductivity order parameter 〈µ〉[18] and the re-
sult is that indeed vacuum is a dual superconductor
in the region below the transition line , and goes to
normal above it. Moreover the transition is consistent
with first order at least in the region of low masses.

The order of the transition across the critical line
in Fig (1) is a fundamental issue in the study of con-
finement. As noticed in Sect.1 a natural explanation
of observations on the existence of free quarks is that
the deconfining phase transition is an order-disorder
transition : a continuous transition (crossover) would
imply continuity, and hence would require an unnat-
ural way of explaining the inhibition factors of order
≈ 10−15 which are observed in nature.

An analysis of the chiral transition based on renor-
malization group and 4−ǫ can be made [19], assuming
that the relevant critical degrees of freedom are the
scalars and pseudoscalars.

The result is that the chiral transition is first order
for Nf ≥ 3.

For Nf = 2 two possibilities exist depending on the
behavior of axial UA(1) symmetry across the critical
point . That symmetry is broken by anomaly at T = 0
and is expected to be restored at some temperature.

If mη′ the mass of the singlet pseudoscalar vanishes
at Tc then the chiral transition is first order and the
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same is at m 6= 0 in a neighbor of the chiral point
m = 0.

If instead mη′ = 0 at Tc the chiral transition is
second order in the universality class of O(4) and a
crossover at m 6= 0. In this case a tricritical point ex-
ists at non zero value of the baryon chemical potential
[See. Fig.(1) ] which could be observed in heavy ion
experiments, but has not been observed up to now.

The order of the chiral transition can be investi-
gated on the lattice by looking at the behavior of the
specific heat and of other susceptibilities as a function
of tha spatial volume.

This analysis requires large amounts of computer
time on supercomputers . Pioneering work on the
subject was inconclusive. More recently a big effort
has been put on the problem[20] which is still going
on.

The motivation for such an effort is the relevance of
this issue to the understanding of confinement mecha-
nisms. All the existing evidence points to a first order
transition, or to an order disorder nature of the decon-
fining transition. This also agrees with the observed
behavior of the order parameter µ for dual supercon-
ductivity [18]. More work is needed , however , to
fully clarify the situation.
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