hep-ph/0609183v1l 19 Sep 2006

arxXiv

IPM School & Conference on Lepton and Hadron Physics, Tehran, May 15-20 2006

On Equations for the Multi-quark Bound States in

Nambu—-Jona-Lasinio Model
R.G. Jafarov

Institute for Physical Problems, Baku State University, AZ 1148, Baku, Azerbaijantl

V.E. Rochev

Institute for High Energy Physics, 142280, Protvino, Moscow Region, Russidl

In present report we review some preliminary results of investigation of higher orders of mean-field expansion
for Nambu-Jona-Lasinio model. We discuss first results of investigation of next-to-next-to-leading order of
mean-field expansion equations for four-quark and three-quark Green functions. We have considered equations
for Green functions of Nambu—Jona-Lasinio model in mean-field expansion up to third order.

1. INTRODUCTION AND SUMMARY

Multi-particle equations are a traditional basis for
a quantum-field description of bound states in parti-
cle physics. A well-known example of these equations
is the two-particle Bethe-Salpeter equation (BSE) for
the two-particle amplitude and for the two-particle
bound state [1l]. The multi-particle (three or more par-
ticle) generalizations of the BSE have been also stud-
ied. A straightforward generalization of two-particle
BSE has been intensively studied in sixties-seventies
of last century. A best exposition of these studies can
be found in the work of Huang and Weldon [2].

An essential imperfection of the original Bethe-
Salpeter approach to multi-particle equations was a
full disconnection of the approach with the field-
theoretical equations for Green functions (which are
known as Schwinger-Dayson equations (SDE)). This
imperfection has been eliminated by Dahmen and
Jona-Lasinio, which had included the BSE to the field-
theoretical Lagrangian formalism with the consider-
ation of functional Legendre transformation with re-
spect to bilocal source of fields [3]. Then this approach
has been generalized for multi-particle equations with
consideration of Legendre transformation with respect
to multi-local sources [4].

However, these theoretical constructions had not
solved the principal dynamical problem of quantita-
tive description of real bound states (nucleons, mesons
etc.). A solution of BSE-type equations has been
founded as a very complicated mathematical tool even
for simple dynamical model. There is a main rea-
son of a comparatively small popularity of the method
of multi-particle BSE-type equations among the theo-
rists. Much more popular approach to the problem of
hadronization in QCD is based on the 't Hooft’s con-
jecture that QCD can be regarded as an effective the-
ory of mesons and glueballs [3]. Subsequently, it was
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shown by Witten that the baryons could be viewed as
the solitons of the meson theory [6]. Futher develop-
ment of these ideas has been successful and has leaded
to the prediction of pentaquark states in baryon spec-
trum [[7].

Nevertheless, the investigations of multi-quark
equations are of significant interest due to the much
less model assumptions in this approach in comparison
with the chiral-soliton models. The solutions of multi-
quark equations will provide us almost exhaustive in-
formation about the structure of hadrons. There is
basic motivation of present work.

We shall investigate Nambu—Jona-Lasinio (NJL)
model with quark content which is one of the most
successful effective models of QCD in the non-
perturbative region (for review see [d], [9]). In over-
whelming majority of the investigations, the NJL
model has been considered in the mean-field approx-
imation or in the leading order of 1/n.- expansion.
However, a number of perspective physical applica-
tions of NJL model is connected with multi-quark
functions (for example: meson decays, pion-pion scat-
tering, baryons, pentaquarks etc.). These multi-quark
functions arise in higher orders of mean-field expan-
sion(MFE) for NJL model. To formulate MFE we
have used an iteration scheme of solution of SDE with
fermion bilocal source [10].

We have considered equations for Green functions of
NJL model in MFE up to third order. The leading ap-
proximation and next-to-leading order (NLO) of MFE
maintain equations for the quark propagator and the
two-quark function and also the NLO correction to the
quark propagator. The next-to-next-to-leading order
(NNLO) of MFE maintains the equations for four-
quark and three-quark functions, and next-to-next-
to-next-to-leading order(NNNLO) of MFE maintains
the equations for six-quark and five-quark functions.
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2. MEAN-FIELD EXPANSION IN
BILOCAL-SOURCE FORMALISM.
LEADING ORDER AND NLO

We consider NJL model with the Lagrangian

£ = $id + 5| (Bv)” + (Birsmv)’|.

The Lagrangian is invariant under transformations
of chiral group SUy (2) x SU4(2), which correspond to
u-d quark sector. A generating functional of Green
functions (vacuum expectation values of T-products
of fields) can be represented as the functional integral
with bilocal source:

G(n) = / D(w, ) expif / daL

- [ dedyinte. v @)}

Here n(y, z) is the bilocal source of the quark field.
The n-th functional derivative of G over source 7 is
the n-particle (2n-point) Green function:
oG
(1, 1) -+ 01(yn, n)

n=0

Translational invariance of the functional-integration
measure gives us the functional-differential SDE for
the generating functional G :

-~ 0G ) oG
Oz —y)G + 10, +1 t { ]
(=) ! on(y, ) Zg{én(y,x) " on(z, x)

el [” e xJ )

0G
= /d:cln(x, Il)m

We shall solve this equation employing the method
which proposed in work [11]]. A leading approximation
is the functional

GO = exp {Tr (S(O) * 77) }
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The leading approximation generates the linear itera-
tion scheme:

G:Gw)+G(1)+...+G(n)+...,
Functional G(™ is
G — p(n)G(O)7

where P is a polynomial of 2n -th order over the
bilocal source 7 .

The unique connected Green function of the lead-
ing approximation is the quark propagator. Other
connected Green functions appear in the following it-
eration steps. The quark propagator in the chiral limit
is

S(O) = (m _ﬁ)_lv

where m is the dynamical quark mass, which is a so-
lution of gap equation.
A first-order functional is

G = {%Tr(Sél) * 772) + Tr(S(l) * 77) }G(O).

The iteration-scheme equations give us the equation
for two-particle function Sél):

S ( oy ) — —So(z — 4/)So(a’ — 1)

x/ y/

+ig/d:cl{(So(I—Il)So(xl—y))” {Sél) <i} Z} )]

—(So(a—a1)757°7% So (w1 —))tr [v s (‘T v )h
(1)
1

and the NLO correction to quark propagator S(:

=

S(l)(a:—y) :ig/da:ls’(o)(a:—xl){Sél) <$1 Y )

Ty I

_%#$n<m y)%#}

1 T1

+ig / dz1 SOz — 21)8O (21 — y)trS™M(0).

The graphical representations of these equations see
on Figs. 1 and 2., where the graphical notations of
Fig. 3 are used.

These equations can be easily solved, and the so-
lutions contain singlet scalar quark-antiquark bound
state with mass 2m (sigma-meson) and massless (in
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Figure 1: The equation for NLO two-quark function.

Figure 2: The equation for NLO correction to quark
propagator.

the chiral limit) pseudoscalar bound states (pions).

To describe the solution of the NLO equation for two-

quark function and for future purposes we introduce

the composite meson propagators by following way:
a) Let us define scalar-scalar function

T T
z

Sy(z —2') = tr [sg” ( ﬂ ~< p(@)p(a’) >

(2)
From the equation (1) for two-quark function we ob-
tain (in momentum space)

1 )
So(p) = 72 (1= 1Aq(p)) (3)
Here we define the following function, which we call
o—meson propagator

Balp) = 2, a
where
Io(4m?
Zy(p) = %
and

_ 1
holp) = / oo m )

b) Pseudoscalar-pseudoscalar function is defined as

a b
Sz — o) = tr [55” ( v )757—757—]

' 2 2 09
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j— (k)
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Figure 3: Diagram rules.
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Figure 4: The equation for NNLO four-quark function.
e R Do
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Figure 5: The equation for NNLO three-quark function.

a b
T - T
~< 5 71/)(33)1/)75 77»/1(33/) > (5)
From the equation (1) for two-quark function we ob-
tain (in momentum space):
1
ig

Here we define the pion propagator

Se(p) = —— (8" — AT (p)). (6)

vz (p), 7)

p

A (p) =

where Z,(p) = IIOD((pOz)).

3. NNLO OF MEAN-FIELD EXPANSION

NNLO(second-order)generating functional is

G [y = {%ﬂ(&?) ') + %Tr(sf) “n’)

—I—%Tr(Sé?) * 772> + Tr(S(2) * 77) }G(O).

The equations for four-quark and three-quark func-

tions see on Figs. 4 and 5.

The equations for the four-quark function .S f) and
for the three-quark functions S?(,Z) are new, and the
equations for two-particle function Sf) and propa-
gator S® have the same form as the corresponding
NLO equation except of the inhomogeneous terms.
For NNLO equations these terms contain four-quark
function Sf) and three-quark S§2)function.

The equation for the four-quark function has a sim-
ple exact solution which is the product of NLO two-
quark functions (see Fig. 6). As it seen from this solu-
tion, the mm—scattering in NJL model is suppressed,
i.e. in the NNLO of MFE this scattering is absent,
and it can be arise in the NNNLO (third order) only.
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Figure 6: The solution of equation for four-quark
function.

4. VERTEX onm

The existence of above exact solution for the four-
quark function gives us a possibility to obtain a closed
equation for the three-quark function. As a first step
in an investigation of this equation we shall solve a
problem of definition of orm—vertex with composite
sigma-meson and pions. Let us introduce a function

X X a Tb
Wﬁﬁw(acx’x”) =tr S’§2) ' a 75—75—}
IN x// 2 2

_ _ a _ b
~< D)y (@) (a) >

and define:
a) scalar vertex

r T

/
V,(xz'z") = tr |:So($ - x’)Sél) ( o )]

= Zinc/d:clvs(xx'xl)Ag(xl —a"). (8)

Here: vg(za'z") = tro[So(z—2a")So(a' —2") Sy (2" —x))
is the triangle diagram.
b) pseudoscalar vertex

a / b
V;b(xx/:zr”) =tr {So(x—z/)%%sg) < f,, ;,, > 75T—]

= 2inc/d:vlvp(:vx’x1)Afrb(:vl —a"). 9)

Here:  wvp(za’z’) =
2" )75 50 (2" — x))].

With definitions (2)-(9) we obtain for vertex func-
tion W the following equation:

tro[So(x — a')vsSo(a’ —

Wab

o (ea'a") = W' (ea's")

+2ignc/daclls(ac — )W (z2'2"),
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Figure 7: The connected part of sigma-pion-pion-vertex.

where lg(x) = tro[So(x)So(—x)] is the scalar quark
loop. Inhomogeneous term W is:

Wé’b(a:x’x”) = V;’b(a:x’x”) + V;’b(azx”az/)

+4ig/dle,‘fl“(x;le’)Sﬁlb(xl — ")
—|—4ig/dle,flb(:vxlx”)Sﬁla(xl )

—ig/dxl(Vg(xxlxl) — 4V (20 21)) S (2] — )

Using definitions (2)-(9) we have:

[W(z)zb (acx’x")] con
= —2nc/d:cld:cgvp(xxlxg)[Afrla(xg—x’)A?b(xl—3:”)

A (g — 2 YAD () — 2')].

The equation for W can be easy solved in the
momentum space and and a solution is

W (pp'p") = io (p)W5 (pp'p")

where p is c—mesons momenta, and p’, p” are pion
momenta: p = p’ + p”. The connected part of Web
is an decay amplitude 0 — 7w. It is has a following
form:

(Wb (pp'p")] "

2”() aail al
= S0 0)vp (r'p")+op (e P)IAT () AT ("),

(10)

(See also Fig.7.).

5. NNNLO OF MEAN-FIELD EXPANSION

The third-order generating functional is

G [y = {éﬂ(ség’) 1) + %Tr(Ség) 1)
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Figure 8: The equation for six-quark function.
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Figure 9: The equation for five-quark function.
1 3) 4 1 (3) 3
—l—ETr S, +—|—§Tr Sy xm

-i-%Tr(Ség) " n2) + ﬂ(s<3> * n) }G<0>.

The graphical representations of equations for six-
quark functions and for five-quark function see on
Figs. 8 and 9. The equations for the six-quark
function and for the five-quark function in our iter-
ation scheme are new, and the equations for four-
quark function Sf),three—quark function Ség), two-

quark function Ség) and quark propagator S®) have
the same form as the second-order equations except of
the inhomogeneous term, which contains the six-quark
function and the five-quark function.
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