Cryoco, Inc.

Short Course on Cryogenic Safety

Robert Bell May 10, 2006

Short Course Agenda

- Part 1 8:45 10:30AM
 - Introduction
 - Safety and Cryogenic Fluids
 - Cryogens of Interest to SLAC
 - General Safety Topics
 - Physiological Hazards
 - Materials and Construction
 - Over-pressurization, Explosive and Flammability Hazards
 - Personnel and Operational Awareness
 - Material Safety Data Sheets

- Part 2 10:45 Noon
 - Cryogenic Design and Safety Equipment
 - Design Considerations
 - Cryogenic Relief Valves
 - Burst Discs
 - Venting of Facilities and Systems
 - System Monitoring
 - Problems of Interest
 - Summary

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – Introduction

- Safety and Cryogenic Fluids
- Cryogens of Interest to SLAC

Cryogenic Storage and Cooling Systems

- Cryogens require specialized storage containers to maintain any kind of shelf life (system boil-off time > minutes)
 - Commonly known as "Dewars"!
 - Storage containers range in size from 1 Liter to 42,000,000 gallons
 - Cooling systems, such as the ones in use at SLAC (LN₂, LHe)
- Economics and <u>Safety</u> determine best system design
 - Rate Loss (Heat leak)
 - Weight
 - Materials of Construction (System Compatibility)
 - Insulation System (Dependent upon life requirements)
 - Specialized Requirements (dynamic environments, etc.)
- SLACs use of the nitrogen, carbon dioxide and helium also brings in the need for some amount of knowledge on oxygen and its unique requirements
- In this course we will not deal a lot with carbon dioxide, most everything that relates to cryogenic nitrogen will cover C0₂
 - Freezing point at about 216 K somewhat the conventional number of 188K, not considered a cryogenic fluid

Cryoco, Inc.

5/30/2006

BaBar Refrigerator & Solenoid

- Many standard designs are available through a variety of suppliers and manufacturers; established international codes and regulations have worked out.
- ASME Boiler and Pressure Vessel Code, Section VIII and is mandatory for most experimental equipment design and construction
- Compressed Gas Association (CGA) has a number pamphlets published dealing with handling of cryogenics
 - P-1 Safe Handling of Compressed Gases in Containers
 - S-1.1 Pressure Relief Device Standards Part 1 (circular cross-sectional storage units)
 - S-1.2 Pressure Relief Device Standards Part 2 (cargo and transportable)
 - S-1.3 Pressure Relief Device Standards Part 3 (permanently mounted units)
 - ASME B31.1 Power Piping and ASME B31.3 Chemical Plant and Petroleum Piping (design and inspection of welded joints)
- Other regulatory documents that I recommend
 - CGA G-4.1 Cleaning Equipment for Oxygen Service
 - 29 CFR 1910.104 Oxygen (OSHA standard)

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – General Safety Topics • Physiological Hazards

Materials and Construction

• Over-pressurization, Explosive and Flammability Hazards

• Personnel and Operational Awareness

- Contact Burns/Frostbite
 - Asphyxiation/Toxicity
 - Hypothermia

- <u>Contact Burn</u> exposure of the skin to low temperatures.
 - Similar to heat burns; can locally freeze and tear or remove skin.
 - Due to decrease in feeling, can easily led to Frost Bite!
- <u>Frost Bite</u> freezing of skin and body parts due to exposure of low temperatures.
 - Can led to permanent damage and discoloration up to loss of limb
 - Prolonged exposure of cold vapour or gas can damage lungs and the eyes.
 - Exposure time on the order of seconds, not minutes!!
- Due to the nature of cryogens low viscous nature, will penetrate woven and other porous clothing materials much faster than water!

- Personnel training is critical to personnel safety
 - An organized well thought-out safety training program will significantly reduce personnel injuries in this area
- Minimize exposure to operation
- If you need to be there, understand where the risks are. Vent locations, cold equipment, etc.
- Wear proper protective clothing
 - Non-absorbent loose fitting gloves; eye protection, non-flammable cover-alls, proper footwear
- Never go alone!!
- Make someone aware of what you doing, who is not with you.
- Watch out for problems and if you don't understand; STAND DOWN!

Contact Burns/Frost Bite: What about clothing?

- Not only are safety glasses or goggles required but face shields are also required for systems under pressure and handling/venting cryogens
- Recommend loose fitting, grease-free leather gloves
- Trousers should always been worn outside of boots or work shoes; no open or porous shoes are permitted
- All clothing should be grease free
- Clothing exposed to low temperature helium gas should be handled with care, potential oxygen build up in articles

- Immediate first aid
 - Remove from area, if required
 - Flush area with copious amounts of tepid water
 - Do not apply direct heat to area
 - Notify medical and arrange transport
- While awaiting transport
 - Loosen restrictive clothing
 - Continue flushing with water
 - Protect frozen/burned parts with sterile dry bondages
 - Do not smoke or drink, affects blood flow
 - Do not remove frozen clothing; massage or rub frozen parts; use safety showers or eye washes; or apply ointments

- Displacement of oxygen in the air that you breathe by the cryogenic fluid vapour/gas release or venting could be an asphyxiation risk
 - Confined or minimal ventilation areas are biggest risk
 - However, all vapour clouds should be treated very carefully
 - Oxygen concentrations as low as 13% can be tolerated at 1 atmosphere
- Toxicity (poisoning) can cause damage and death if not adequately dealt with; appears not to be a problem at SLAC since the primary cryogens are non-toxic
 - Mentioned for completeness

Cryoco, Inc.

Asphyxiation Oxygen Limits and Physical Reactions

Sudden Asphyxia – Inhalation of a gas containing practically no oxygen; unconsciousness is immediate (two breaths and out!)

Gradual Asphyxia – See Below!

Percent Oxygen in Air	Physiological Reactions Respirations deeper, pulse up, coordination poor.		
12% - 14%			
10% - 12%	Respiration fast and shallow, giddiness, poor judgment, lips blue.		
8% - 10%	Nausea, vomiting, unconsciousness, ashen face.		
6% - 8%	8 minutes, 100%fatal; 6 minutes, 50% fatal; 4-5 minutes, all recover with treatment.		
4%	Coma in 40 seconds, convulsions, respiration ceases, death.		
0%	Immediate unconsciousness without warning; may fall as if struck by a blow on the head. Death in 2-3 minutes if not resuscitated.		

5/30/2006

- Best option is to have a well ventilated area which sweeps and exchanges the air in the area of concern
 - HVAC design requirement, 1 2 volumes per minute
- Personnel training in confined space operations, use the Job Safety Analysis (JSA) approach!
- Use harnesses to allow you to be extracted
- Use air packs or lines until the environment is verified safe
- Allow work in teams with at least one member outside the confined space or area of concern to be the safety valve!
 - Communications within the entire team is critical to a safe operation
- Monitor environment for air composition
 - Portable and/or permanent oxygen monitors should be used

- Make sure that you are prepared
 - Safety extraction equipment is available and ready to use
 - Personnel are trained and certified for tasks
 - Have a plan (checklist) and use it!
- Remove any victim as quickly as practical to a normal atmosphere
- If not breathing, start artificial respiration immediately
 - Time is the killer here!
- Get into medical facility as soon as possible.

- Occurs when the body is not capable of maintaining its normal temperature.
 - Do you think in long duration operations with cryogenic fluids that this might be a problem?
 - Condition does affect personnel reaction time and mental awareness
- Precautions
 - Similar approach to Frost Bite however may add a layer or two of clothing to keep warm
 - Rotate crew members to keep from long term exposure
- What to do?
 - Get warm and do not re-engage until rested for at least 8 hours, if possible

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – General Safety Topics

- Physiological Hazards
 - Materials and Construction
- Over-pressurization, Explosive and Flammability Hazards
 - Personnel and Operational Awareness

What materials are suitable for cryogenic systems and reduce the safety risks?

- Materials should remain ductile at the temperature of the cryogen used
 - Avoid bcc metals such as carbon steel of soft solder
- This are always trade-offs in material selection
 - Thermal expansion or contraction
 - Strength, yield and ultimate
 - Ductility, shock strength, fatigue life
 - Heat capacity
 - Thermal conductivity
 - Magnetic properties, etc
- Of particular interest in the safety arena are when and how might the material become unsafe?

Materials Can be Used to Your Advantage! Such As Ductile-Brittle Transitions

- Ductility of most metals decreases at low temperatures. Some undergo a rapid change over a narrow band.
- Transition temperature between ductile and brittle behavior is called NDT (Nil Ductility Transition) and is measurable.
- Charpy impact test is one of these tests
- NDT data is available for most materials but varies with specimen size, shape and test threshold.

-360	-260	-160	-60	40	٥F	
-218	-162	-107	-51	4	٥C	20
55	111	166	222	277	K	720

5/30/2006

Cryoco, Inc.

Thermal Stresses in Cryogenic Service Must be Accounted for in Design

- All materials contract when cooled from room temperature to cryogenic temperatures
- The expansion (and contraction) coefficient is a function of temperature but is typically 3 to 5 mm/m for common structural materials between room temperature and 77K
 - Little additional change occurs below 77K
- Joints and supports must be able to handle induced stresses and transitions between various materials, eg aluminum and stainless steel must be accounted for in the design
- An uneven cooldown will create large thermal stresses within a vessel
- Pipeline example: 30 m stainless steel pipeline would contract 8.4 cm on cooldown to 77K

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – General Safety Topics

- Physiological Hazards
 - Materials and Construction
- Over-pressurization, Explosive and Flammability Hazards
 - Personnel and Operational Awareness

- An explosion results from a sudden release of energy dissipated by air chock waves (and acceleration of shrapnel, thermal radiation, etc.) and causes a temporary over-pressurization
- Definitions of interest for explosions
 - A bursting explosion releases stored pressure energy without a chemical reaction – most likely risk at SLAC
 - A deflagration is a combustive explosion with a subsonic flame speed – least likely but possible at SLAC
 - A detonation is a combustvie explosion with a supersonic flame speed
 - An enclosed space may turn deflagration into a detonation
- Mitigation is a usually a combination of design and appropriate safety devices to keep system from exploding

Cryoco, Inc.

Over-pressurization needs to be addressed for all operations

- Example case for tank lock up
 - 1000 gal storage dewar
 - 1 percent per day boil off
 - Storage dewar is 70% full

- Parasitic heat expands liquid in tank
- Pressure rises at 0.36 psi/hour
- Once lquid fills ullage, pressure rises rapidly, 21 psi/hour

Quenching a large magnet with all its energy into a cryogenic cooling medium in the matter of milliseconds has the same effect only incredibly faster!

5/30/2006

Cryoco, Inc. **Overpressurization Relationship to Blast Wave Dissipation Helps Make Point**

Blast Overpressure or Shrapnel Momentum	Structural or Biological Response to Blast Effects
0.5 to 1 psig	Glass windows shatter
1 to 2 psig	Corrugated steel or aluminum paneling buckles
2 to 3 psig	Non-reinforced concrete or cinder-block walls shatter
5 psig	Eardrums rupture
7 to 8 psig	Non-reinforced brick walls shear and fall
15 psig	Lung damage
115 ft/sec for a 0.35-oz glass projectile or 10 ft/sec for a 10- lb masonry projectile	Projectile penetrates abdomen
10 ft/sec for a 160-lb man	Skull fracture from impact

Ok, but what does that mean to me?

Distance (feet)	Overpressure (psig)	t1 (msec)	t2 (msec)
2	320	0.2	0.8
4	70	0.8	1.6
6	28	1.8	2.4
8	15	3.0	3.0
10	9.6	4.3	3.2
20	3.0	12	
40	1.2	29	
100	0.35	82	
200	0.13	1 <mark>6</mark> 9	
400	0.05	346	

t1 is the blast wave arrival time

t2 is the time required for the overpressure to decay back to zero

- Obvious with gases such as hydrogen, oxygen, LNG and acetylene; but not used in normal operations at SLAC
- However, liquefied inert gases such as nitrogen and helium may condense oxygen out of the atmosphere, causing oxygen enrichment or entrapment in unsuspected places
- At temperatures < 82 K, metal surfaces will condense oxygen and form enriched air (50% O₂ and 50% N₂) to drip and pool on surfaces
 - Uninsulated pipelines provide this surface
 - Air boils at 78 K (at 1 atm of pressure) in a 6% O_2 -94% N_2 vapor mixture, enriching the O_2 content

5/30/2006

This is how enrichment works!

- Air condenses from an exposed LN₂ or cold GHe pipe is enriched to 50% O2 (see chart)
- Falls/drips to ground and may flash off leaving O₂ rich local atmosphere; pool is ground gets cold enough; or drip onto flammable material
- Avoid this condition if at all possible
- If not, use drip pans to control where enriched air can go

PHASE DIAGRAM

Ok, so how do we prevent the possibility of fires in your cryogenic operations?

- As in all fire risks, you control the fire triangle you control the risk of fire
- In the case of SLAC, reduce the presence of the oxidizers to the minimum possible
 - Insulate exposed cryogenic transfer lines
 - Maintain good ventilation
- Eliminate all combustible materials
 - Good housekeeping is essential
 - Oxygen makes most everything burn so be careful
- Attempt to eliminate all ignition sources
 - Always assume they are present
 - No smoking, open flames, thermal ignition sources
 - Proper electrical techniques, lightning protection, static
 discharge controls

5/30/2006

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – General Safety Topics

- Physiological Hazards
 - Materials and Construction
- Over-pressurization, Explosive and Flammability Hazards
 - Personnel and Operational Awareness

Operational Hazards to Cryogenic Operations at SLAC

- Storage and tank failures overpressurization
 - Must have relief devices and set at appropriate pressures
 - Tanks should be sized and spaced appropriately
 - Calibration and periodic maintenance is required!
- Process and procedures for spills, leakage and disposal
 - Venting paths established and verified open
 - Emergency equipment staged
- Transportation and transfer
 - Paths in and out are clear
 - Procedures established and dry-runs completed
- All venting should be controlled
 - Free venting of any cryogen should be eliminated or tightly controlled.

- Personnel training is critical in all aspects of cryogenic safety
- Always be safety conscious
- Be sure that all equipment is in good working order, including safety equipment
- Understand hazards to be faced in doing job
- Ensure adequate warning signs are posted
- Complete a JSA and review with team operations and procedures prior to doing job
- Always work as a team of two or more
- Know emergency steps and appendices

- Practice these essential elements of contamination control:
 - Initial system component disassembly and inspection
 - Cleaning of individual parts (I recommend all cryogenic parts be cleaning to a level equal to oxygen cleanliness as a minimum)
 - Visually inspect
 - Store and label components
 - Pressure and leak test systems
 - Verification of cleanliness by sampling

Cryoco, Inc.

Short Course on Cryogenic Safety Part 1. – Material Safety Data Sheets • Nitrogen • Helium

Acrobat Document

P4600g.pdf

5/30/2006