Magnetism with ultra-short magnetic field pulses from highly relativistic electron bunches.

H.C. Siegmann, I. Tudosa, J. Stöhr, C. Stamm, Y. Acremann (Stanford - SLAC)

- A. Vaterlaus(ETH Zürich) *magnetic imaging*
- A. Kashuba(Landau Inst. Moscow) ; A. Dobin(Seagate) *theory*
- G. Woltersdorf, B. Heinrich (S.F.U. Vancouver) samples

Outline

- Overview of magnetic relaxation
- SLAC magneto-dynamic experiments
- Simulations vs. Experiments
- Intrinsic non-linear relaxation theory
- Magnetic recording

Ferromagnetic Relaxation

Ferromagnetic Relaxation Mechanisms

- <u>Extrinsic</u>: scattering
 off impurities, defects:
- <u>Intrinsic</u>: interaction with
 <u>phonons</u>

<u>conduction electrons</u>

OIntrinsic magnon ~ magnon scattering magnons $K_1 \rightarrow K_3 \rightarrow K_1 \rightarrow K_2 \rightarrow K_1 + K_2 - K_3$

LLG damping

Large Angle Switching

• *FMR:*

- small excitations
- LLG damping

Magnetic Applications:

large angle switching

SLAC experiments

sample

field of the beam

28 GeV

Simulations: α =0.004, no interactions

Time: 900 ps

Simulations: α =0.02, no interactions

Spin Waves = Magnons

○ k=0 magnons are excited when average magnetization deviates from equilibrium direction

○ k≠0 magnons at **t=0** are thermally excited: $E_k = \hbar \omega_k \cdot N_k \approx \hbar \omega_k \cdot \frac{I}{\hbar \omega_k}$

○ Zeeman and Demag Energy of k=0 magnons is transferred into Exchange, Zeeman and Demag Energy of k≠0 magnons

Simulations with interactions, α =0.004

Pattern along the horizontal center line

Pattern along the horizontal center line

Pattern along the horizontal center line

New SLAC experiments on thin Fe films

Spin wave generation

Siegmann Experiment

Back, Allenspach, Weber, Parkin, Weller, Garwin, Siegmann: Science, 1999. Easy axis Co, 200A~thick, H_K=2 kOe Short (10ps) pulse

Final M

300 µm

300 µm

 non~uniform field
 In LLG calculation, reversal pattern strongly depends
 on *damping*
 Ω

Required α=0.037
 to explain results

Siegmann Experiment: Simulations

Analytic Theory: 3,4~magnon scattering

O <u>H. Suhl Hamiltonian:</u>

Simulations: Magnon Numbers Dynamics

Chaotic switching

Chaos onset

uniform pulse field H_{pulse}=20 kOe at ~ 40 um from the center

full chaos after 1ns

chaotic domains slowly disappear after ~ 5ns high magnetic temperature?

Magnetic recording

Write process

simulations for realistic heads and media,

- but with high damping
- distances in nano-meters
- bit length ~25nm, velocity ~50m/s

Importance for Magnetic Recording

Time-resolved magneto-optic Kerr effect

Disadvantages:

- very low field (<100 Oe)
- Olonge rise time (>50 ps)
- stroboscopic technique
- requires mounting or growing samples on the stripe line

Summary

- Ultra-fast magneto-dynamics with highly relativistic electrons at SLAC is a very powerful and unique technique for studying ferromagnetic relaxation
- Very interesting non-linear physical phenomena are being discovered in these experiments and are not fully understood at the moment