## Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators

Erdem Oz\* USC

E-164X,E167 Collaboration

\*eoz@usc.edu

### What is Dark Current and Why is it Important?

• One of the fundamental limits to high accelerating gradients in conventional metallic particle accelerators ( < 100 MeV/m)



•Lead to active research on Plasma Accelerators (10-100 GeV/m)

## Is there a corresponding limit in Plasma Accelerators?





# The wake grows from an instability, therefore the onset of trapping is not controllable

Experimental Setup Experimental Setup



Clear threshold at ~7 GV/m

**Evindence For Particle Trapping Treshold** 



- Trapping above a threshold wake amplitude as measured by average energy loss or decelerating field: ≈7GV/m
- Excess charge of the order of the beam incoming charge (1.6x10<sup>10</sup> e<sup>-</sup>)
- Evidence for two (or more) short bunches of trapped particles

## Simulation of the Experiment with OSIRIS\*



#### Parameters of OSIRIS Simulation For The Full PWFA Experiment

| Beam Spot Size $(\sigma_r)$<br>Gaussian  | 12 μ                                    |
|------------------------------------------|-----------------------------------------|
| Beam FWHM                                | 70 μ                                    |
| (non-Gaussian longitudinal distribution) |                                         |
| Beam Energy                              | 28.5 GeV                                |
| Number of Beam e <sup>-</sup>            | 1.88 x 10 <sup>10</sup>                 |
| Li Gas Density (n <sub>0</sub> )         | 1.6 x 10 <sup>17</sup> cm <sup>-3</sup> |
| Number of Simulation Cells               | 500 x 600 moving                        |
| Beam Particles/cell                      | 25                                      |
| Gas Particles/cell                       | 1                                       |
| dt (1/ $\omega_p$ )                      | 0.0286                                  |
| Cell Size ∆z x ∆r                        | 0.09 x 0.04 c/ω <sub>p</sub>            |

#### OSIRIS Simulation: Real Space (r-z) Of Li & He Electrons



OSIRIS Simulation: Phase Space ( $P_z$ -z) Of Li & He Electrons and the on-axis line out of the  $E_z$ 



He electrons do and reach energies up to 2.5 GeV

## TRAPPING OF PLASMA e<sup>-</sup>



• High-energy, narrow  $\Delta E/E$  trapped particle bunches

Courtesy of P. Muggli

# CARTOON OF TRAPPING



## Simulations Verify Theory and agrees well with Experiment

Vertical Lines are the analytic estimates each corresponds to a different simulation Constant of motion for a



Constant of motion for arbitrary wave potentials of the form,  $A = A(z-ct), \Phi = \Phi(z-ct)$ 

$$\gamma mc - P_z + q \frac{\Psi}{c} = \text{const};$$

 $k^{'\,:}$  calculated from linear fits to  ${\rm E_z}$  from simulations

Peak Field : calculated from simulations

Beam charge is varied from 0.4 to 1 times that of original beam from left to right

# Trapped particles load the wake causing less energy gain



Plasma electrons are dragged out of the plasma by positron beam and can become as dense as the positron beam\*



\*T. Katsouleas et al. Phys Fluids b 1990