OVERVIEW OF LABORATORY ASTROPHYSICS

Pisin Chen Stanford Linear Accelerator Center Stanford University

- Introduction
- Calibration of Observations
- Investigation of Dynamics
- Probing Fundamental Physics
- Summary

SABER Workshop March 15-16, 2006, SLAC

National Research Council Turner Committee: Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century

Laboratory Astrophysics can address several of these basic questions

- How do cosmic accelerators work and what are they accelerating?
- Are there new states of matter at exceedingly high density and temperature?
- Are there additional space-time dimensions?
- Did Einstein have the last word on gravity?
- Is a new theory of matter and light needed at highest energies?

One of the seven recommendations made by the Turner Committee: Recommendation On Exploring Physics Under Extreme Conditions In The Laboratory "Discern the physical principles that govern extreme astrophysical environments through the laboratory study of high enrgy-density physics. The Committee recommends that the agencies cooperate in bringing together the different scientific communities that can foster this rapidly developing field."

Connection to Extreme Astrophysical Conditions

- Extremely high energy events, such as ultra high energy cosmic rays (UHECR), neutrinos, and gamma rays
- Very high density, high pressure, and high temperature processes, such as supernova explosions and gamma ray bursts (GRB)
- Super strong field environments, such as that around black holes (BH) and neutron stars (NS)

NRC Davidson Committee Report (2003) "Frontiers in High

Energy Density Physics" states:

"Detailed understanding of acceleration and propagation of the highest-energy particles ever observed demands a coordinated effort from plasma physics, particle physics and astrophysics communities"

LABORATORY ASTROPHYSICS

Three Categories of LabAstro

-Using Lasers and Particle Beams as Tools -

1. Calibration of observations

- Precision measurements to calibrate observation processes
- Development of novel approaches to astro-experimentation
- → Impact on astrophysics is most direct

2. Investigation of dynamics

- Experiments can model environments not previously accessible in terrestrial conditions
- Many magneto-hydrodynamic and plasma processes scalable by extrapolation
- → Value lies in validation of astrophysical models

3. Probing fundamental physics

- Surprisingly, issues like quantum gravity, large extra dimensions, and spacetime granularities can be investigated through creative approaches using high intensity/density beams

→ Potential returns to science are most significant

1. Calibration of Observations

1. Fluorescence from UHECR Induced Showers

- Two methods of detection: Fly's eye (HiRes)
 & ground array(AGASA)
- Next generation UHECR
 detector *Pierre Auger* invokes
 hybrid detections
- Future space-based
 observatories use fluorescence
 detection

UHECR: Production and Detection

Acceleration

Cosmic Microwave Background At 2.7 K

$$p + \gamma \Delta p + \pi$$

GZK limit on proton energy: ~5×10¹⁹ eV

Propagation

Detection

SLAC E-165 Experiment: <u>Fl</u>uorescence from Air in Showers (FLASH)

J. Belz¹, Z. Cao², F.Y. Chang⁴, P. Chen^{3*}, C.C. Chen⁴, C.W. Chen⁴,
C. Field³, P. Huentemeyer², W-Y. P. Hwang⁴, R. Iverson³, C.C.H. Jui²,
G.-L. Lin⁴, E.C. Loh², K. Martens², J.N. Matthews², J.S.T. Ng³,
A. Odian³, K. Reil³, J.D. Smith², P. Sokolsky^{2*}, R.W. Springer²,
S.B. Thomas², G.B. Thomson⁵, D. Walz³

¹University of Montana, Missoula, Montana
 ²University of Utah, Salt Lake City, Utah
 ³Stanford Linear Accelerator Center, Stanford University, CA
 ⁴Center for Cosmology and Particle Astrophysics (CosPA), Taiwan
 ⁵Rutgers University, Piscataway, New Jersey

* Collaboration Spokespersons

Motivation for FLASH

- Experiment designed to help resolve discrepancy between measured flux of ultra high energy cosmic rays (UHECR).
- Energy scale of fluorescence technique based upon fluorescence yield (number of photons produced per meter per charged shower particle.
- Provide a precision measurement of the yield.

FLASH Motivation

• At large distances of up to 30 km, which are typical of the highest energy events seen in a fluorescence detector, knowing the **spectral** distribution of the emitted light becomes essential due to the λ^{-4} attenuation from **Rayleigh scattering**.

Fluorescence in Air from Showers (FLASH)

HiRes-SLAC-CosPA (Taiwan) collaboration

Spectrally resolved air fluorescence yield in an electromagnetic shower

Energy dependence of the yield down to ~100 keV

 ≻Aim to help resolve apparent differences between HiRes and AGASA observations

SLAC E-165 (FLASH) Experiment (2002-2004):
 -Two-stage: Thin target and Thick target
 -28.5 GeV electrons, 10⁷ to 10⁹ particles per bunch

nm

Air Fluorescence Yield

FLASH: Thick Target

- Electron beam showered with varying shower depths.
- Particle and photon count measured at each shower depth.
- Confirm long standing assumption that the total fluorescence light in air-shower is proportional to number of cascade charged particles.

FLASH: Status and Prospects

✤ <u>Publications</u>

- June 2002 data: total yield, pressure dependence, effect of impurity.
 J. Belz et al., Astropart. Phys. (2006); astro-ph/0506741
- Thin-target (2003 and 2004 data): precision spectrally resolved yield measurements; humidity dependence.
 - ➢ K. Reil et al., SLAC-PUB-11068, Dec. 2004; Proc of 22nd Texas Symposium, Dec. 2004.
- Thick-target (2004 data): fluorescence and charged particle yields as a function of shower depth and comparison with shower Monte Carlo simulations.

J. Belz et al., Astropart. Phys. (2006); astro-ph/0510375

Future Prospects

 The collaboration is actively assessing whether a next run is needed, pending final outcome of on-going data analysis and publication efforts. 2. Exploring New Techniques for Cosmic Neutrino Detection

- Radio Detection of UHE EAS– Askaryan effect (1962)
- First observation at SLAC FFTB by Saltzberg, et al.
 SLAC Exp. T444 D. Saltzberg, P.W. Gorham et al. Phys.Rev.Lett.86:2802-2805,2001.
- Search for neutrino interactions in Lunar surface using radio
- Antarctic Ice Experiment RICE, ANITA
- Underground Saltdome Shower Array (SalSA) for super-GZK cosmic neutrino detection

Neutrinos: The only useful messengers for astrophysics at >PeV energies

- Photons lost above 30 TeV: pair production on IR & µwave background
- Charged particles: scattered by B-fields or GZK process at all energies
- But the sources extend to 10^9 TeV !

Conclusion:

 Study of the highest energy processes and particles
 throughout the universe
 requires PeV-ZeV neutrino
 detectors

Comparison between Cosmic EM and Neutrino Spectrum

UHECR: "How do cosmic accelerators work and what are they accelerating?"

 $p + \gamma_{2.7K} \to \Delta^* \to n + \pi^{\pm} \underset{\hookrightarrow}{\overset{}{\mapsto}} \mu \nu \underset{\leftrightarrow}{\overset{}{\mapsto}} e \nu \nu$

- UHECR: Top-down or bottom-up?
- If bottom-up, what accelerates the cosmic particles?
- Where are the sources?
- GZK neutrino spectrum and directions indispensable

Every Neutrino points back to its source !

The Askaryan Effect

UHE event will induce an e/γ shower:

In electron-gamma shower in matter, there will be $\sim 20\%$ more electrons than positrons.

Compton scattering: $\gamma + e^{-}_{(at rest)} \rightarrow \gamma + e^{-}$ Positron annihilation: $e^{+} + e^{-}_{(at rest)} \rightarrow \gamma + \gamma$

In solid material $R_{Moliere} \sim 10$ cm. $\lambda >> R_{Moliere}$ (microwaves), <u>coherent</u> $\Rightarrow P \propto N^2$

SLAC Characterization of Askaryan Effect

SLAC FFTB

- 2000 & 2002 SLAC Experiments confirm extreme coherence of Askaryan radio pulse
- 60 picosecond pulse widths measured for salt showers. Unique signal reduces background, simplifies triggering, excellent timing for reconstruction.

ANITA: Antarctic Neutrino Transient Antenna

ESTA: End Station Test of ANITA

SLAC-ANITA Collaboration

Expected date: June 2006

ESTA Ice Target

ICE TARGET FOR ANITA CALIBRATION IN SLAC END STATION A

SalSA: Saltdome Shower Array

A large sample of GZK neutrinos using <u>radio</u> antennas in a 12x12 array of boreholes natural Salt Domes

SalSA sensitivity, 3 yrs live: 70-230 GZK neutrino events

2. Investigation of Dynamics

Length Scales

Can intense neutrino winds drive collective and kinetic mechanisms at the *plasma scale* ?

Bingham, Bethe, Dawson, Su (1994)

Plasma Waves Driven by Different Sources

Equations for electron density perturbation driven by electron beam, photon beam, neutrino beam, and Alfven shocks are similar

Electron beam
$$\left(\partial_t^2 + \omega_{pe0}^2\right)\delta n_e = -\omega_{pe0}^2 n_{e-beam}$$

Photons
$$\left(\partial_t^2 + \omega_{pe0}^2\right) \delta n_e = \frac{\omega_{pe0}^2}{2m_e} \nabla^2 \int \frac{d\mathbf{k}}{\left(2\pi\right)^3} \hbar \frac{N_{\gamma}}{\omega_{\mathbf{k}}}$$

Neutrinos

$$(\partial_t^2 + \omega_{pe0}^2) \delta n_e = \frac{\sqrt{2}n_{e0}G_F}{m_e} \nabla^2 n_v$$

where δn_e is the perturbed electron plasma density

Bingham, Dawson, Bethe (1993): Application to NS explosion Alfven Shocks $\left(\partial_t^2 + \omega_{pe0}^2\right) \delta n_e = \frac{A}{2m_e} \nabla^2 \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{c^2 k^2}{\omega_k \omega_A} (E_A^2 + B_A^2)$

All these processes can in principle occur in astro jets.

1. Supernova Electroweak Plasma Instability

- 99% of SN energy is carried by neutrinos from the core
- Single-particle dynamics unable to explain explosion
- v-flux induced collective electroweak plasma instabilities load energy to plasma efficiently*
- Use laser/*e*-beam to simulate v- flux induced two-stream instability, Landau damping, and Weibel instability

Phys. Lett. A, <u>220</u>, 107 (1996) Phys. Rev. Lett., <u>88</u>, 2703 (1999)

2. Cosmic Acceleration

- Conventional cosmic acceleration mechanisms encounter limitations:
 - Fermi acceleration (1949) (= stochastic accel. bouncing off B-fields)
 - Diffusive shock acceleration (70s) (a variant of Fermi mechanism) Limitations for UHE: field strength, diffusive scattering inelastic
 - Eddington acceleration (= acceleration by photon pressure) Limitation: acceleration diminishes as $1/\gamma$
- New thinking:
 - Zevatron (= unipolar induction acceleration) (R. Blandford)
 - Alfven-wave induced wakefield acceleration in relativistic plasma (Chen, Tajima, Takahashi, Phys. Rev. Lett. <u>89</u>, 161101 (2002).)
 - Weibel instability-induced induction and wakefield acceleration (Ng and Noble, Phys. Rev. Lett., March 2006)
 - Additional ideas by M. Barring, R. Rosner, etc

Alfven-Shock Induced Plasma Wakefield Acceleration

(Chen, Tajima, and Takahashi, PRL, 2001)

- Generation of Alfven waves in relativistic plasma flow
- Inducing high gradient nonlinear plasma wakefields
- Acceleration and deceleration of trapped e^+/e^-
- Power-law ($n \sim -2$) spectrum due to stochastic acceleration

3. Relativistic Jet-Plasma Dynamics

Gamma Ray Burst Blast Wave Model [Meszaros, 2002]

Relativistic jets commonly observed in powerful sources
A key element in models of cosmic acceleration
An understanding of their dynamics is crucial.

3D PIC Simulation Results: Overview

1. Transverse dynamics (same for continuous and short jets):

- Magnetic filamentation instability: inductive Ez
- Positron acceleration; electron deceleration
- 2. Longitudinal dynamics:
 - Electrostatic "wakefield" generation (stronger in finite-length jet)
 - Persists after jet passes: acceleration over long distances.

Particle Acceleration and Deceleration

Longitudinal momentum distribution of positrons and electrons for a finite-length jet at three simulation time epochs.

t in units of $1/\omega_p$

~ half of positrons gained >50% In longitudinal momentum (p_z)

(For details see my talk in Working Group C)

3. Probing Fundamental Physics

1.Event Horizon Experiment Chen and Tajima, PRL (1999)

EVENT HORIZONS: From Black Holes to Acceleration

A stationary observer outside the black hole would see the thermal Hawking radiation. An accelerating observer in vacuum would see a similar Hawking-like radiation called Unruh radiation.

A Conceptual Design of an Experiment for Detecting the Unruh Effect

Schematic Diagram for Detecting Unruh Radiation

5-2000 8544A2

2. Probing Extra Spacetime Dimension?

• In standard theory of gravity, the Planck scale is at

 $M_p \sim 10^{19} \,\text{GeV}, \,\text{or} \, L_p \sim 10^{-33} \,\text{cm}.$

- Assuming large extra dimensions, then $M_p^2 \sim R^n M_*^{n+2}$, and $R \sim (M_p/M_*)^{(n+2)/n} L_p$.
- If M_* is identified with the electroweak, or TeV, scale, then $R \sim 10^{32/n-17}$ cm. (For n=6, $R \sim 10^{-12}$ cm.)
- Distance from accelerating detector and the event horizon,

 $d \sim c^2/a$,

can probe extra spacetime dimension.

• State-of-the art laser can probe up to n=3.

SUMMARY

- History has shown that symbiosis between *direct observation* and *laboratory investigation* instrumental in the progress of astrophysics.
- Recent advancements in *Particle astrophysics and cosmology* have created new questions in physics at the most fundamental level
- Many of these issues overlap with *high energy-density physics*.
- Laboratory experiments can address many of these important issues
- *Laser and particle beams* are powerful tools for Laboratory Astrophysics
- Three categories of LabAstro: *Calibration of observations, Investigation of dynamics,* and *Probing fundamental physics.* Each provides a unique value to astrophysics.

LabAstro Working Group Program

March 15 (Wed.)

WG Parallel Session 1 (11:00-12:00) Pierre Sokolsky (Utah), "Some Thoughts on the Importance of Accelerator Data for UHE Cosmic Ray Experiments" Pisin Chen (KIPAC, SLAC), "ESTA: End Station Test of ANITA"

WG Parallel Session 2 (13:30-15:00) Robert Bingham (RAL, UK), "Tests of Unruh Radiation and Strong Field QED Effects"* Anatoly Spitkovsky (KIPAC, SLAC), "Pulsars as Laboratories of Relativistic Physics," Eduardo de Silva (KIPAC, SLAC), "Can GLAST Provide Hints on GRB Parameters?"

WG Parallel Session 3 (15:30-17:00)

Robert Noble (SLAC), "Simulations of Jet-Plasma Interaction Dynamics"* Johnny Ng (KIPAC, SLAC), "Astro-Jet-Plasma Dynamics Experiment at SABER"* Kevin Reil (KIPAC, SLAC), "Simulations of Alfven Induced Plasma Wakefields"*

LabAstro Working Group Program

March 16 (Thur.)

WG Parallel Session 4 (08:30-10:00)

Bruce Remington (LLNL), "Science Outreach on NIF: Possibilities for Astrophysics Experiments" Bruce Remington (LLNL), "Highlights of the 2006 HEDLA Conference" **Round Table Discussion**, "Considerations of Labaratory Astrophysics"

WG Summary Preparation (10:20-12:00)

*Tentative title