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National Research Council Turner Committee:
Connecting Quarks with the Cosmos:                         

Eleven Science Questions for the New Century
Laboratory Astrophysics can address several of these basic questions

• How do cosmic accelerators work and what are they accelerating?
• Are there new states of matter at exceedingly high density and temperature?
• Are there additional space-time dimensions?
• Did Einstein have the last word on gravity?
• Is a new theory of matter and light needed at highest energies?

One of the seven recommendations made by the Turner Committee:
Recommendation On Exploring Physics Under Extreme Conditions 
In The Laboratory
“Discern the physical principles that govern extreme astrophysical 
environments through the laboratory study of high enrgy-density 
physics. The Committee recommends that the agencies cooperate in
bringing together the different scientific communities that can foster 
this rapidly developing field.”



Connection to                                  
Extreme Astrophysical Conditions

• Extremely high energy events, such as ultra high energy cosmic rays 
(UHECR), neutrinos, and gamma rays

• Very high density, high pressure, and high temperature processes, such 
as supernova explosions and gamma ray bursts (GRB)

• Super strong field environments, such as that around black holes (BH) 
and neutron stars (NS)

NRC Davidson Committee Report (2003) “Frontiers in High 
Energy Density Physics” states:                                                  
“Detailed understanding of acceleration and propagation of the 
highest-energy particles ever observed demands a coordinated effort 
from plasma physics, particle physics and astrophysics communities”



LABORATORY ASTROPHYSICS

P. Chen, AAPPS Bull. 13, 3 (2003).

High Energy LabAstro



Three Categories of LabAstro
-Using Lasers and Particle Beams as Tools -

1. Calibration of observations
- Precision measurements to calibrate observation processes
- Development of novel approaches to astro-experimentation 

Impact on astrophysics is most direct 
2. Investigation of dynamics

- Experiments can model environments not previously accessible in terrestrial 
conditions

- Many magneto-hydrodynamic and plasma processes scalable by extrapolation
Value lies in validation of astrophysical models

3. Probing fundamental physics
- Surprisingly, issues like quantum gravity, large extra dimensions, and spacetime 

granularities can be investigated through creative approaches using high 
intensity/density beams
Potential returns to science are most significant



1. Calibration of Observations



- Two methods of detec-
tion: Fly’s eye (HiRes)
& ground array(AGASA)

- Next generation UHECR
detector Pierre Auger invokes
hybrid detections

- Future space-based 
observatories use fluorescence
detection     

1. Fluorescence from UHECR 
Induced Showers



UHECR: Production and Detection
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Motivation for FLASH

• Experiment designed to help resolve discrepancy between measured flux of 
ultra high energy cosmic rays (UHECR).

• Energy scale of fluorescence technique based upon fluorescence yield 
(number of photons produced per meter per charged shower particle.

• Provide a precision measurement of the yield.



FLASH Motivation

• At large distances of 
up to 30 km, which are 
typical of the highest 
energy events seen in a 
fluorescence detector, 
knowing the spectral 
distribution of the 
emitted light becomes 
essential due to the λ-4

attenuation from 
Rayleigh scattering.

Bunner (1967)



Fluorescence in Air from Showers (FLASH)
HiRes-SLAC-CosPA (Taiwan) collaboration

Spectrally resolved air 
fluorescence yield in an 
electromagnetic shower

Energy dependence of 
the yield down to ~100 
keV

Aim to help resolve 
apparent differences 
between HiRes and 
AGASA observations

SLAC E-165 (FLASH) Experiment (2002-2004):
-Two-stage: Thin target and Thick target
-28.5 GeV electrons, 107 to 109 particles per bunch



FLASH: 
Thin Target

– Precision total yield measurement. 
– Spectral measurement made using 

narrow band filters.
– Only small corrections to current 

understanding. Fluorescence technique 
seems to be built on stable ground!



Air Fluorescence Yield

SLAC
FFTB



FLASH: Thick Target

– Electron beam showered with varying shower depths.
– Particle and photon count measured at each shower depth.
– Confirm long standing assumption that the total 

fluorescence light in air-shower is proportional to number 
of cascade charged particles.



FLASH: Status and Prospects

Publications
• June 2002 data: total yield, pressure dependence, effect of impurity.

J. Belz et al., Astropart. Phys. (2006); astro-ph/0506741
• Thin-target (2003 and 2004 data): precision spectrally resolved yield

measurements; humidity dependence.
K. Reil et al., SLAC-PUB-11068, Dec. 2004; Proc of 22nd Texas 
Symposium, Dec. 2004.

• Thick-target (2004 data): fluorescence and charged particle yields as a 
function of shower depth and comparison with shower Monte Carlo 
simulations.

J. Belz et al., Astropart. Phys. (2006); astro-ph/0510375

Future Prospects
– The collaboration is actively assessing whether a next run is needed, 

pending final outcome of on-going data analysis and publication 
efforts.



2. Exploring New Techniques for 
Cosmic Neutrino Detection

• Radio Detection of UHE EAS– Askaryan effect (1962)
• First observation at SLAC FFTB by Saltzberg, et al. 

SLAC Exp. T444 D. Saltzberg, P.W. Gorham et al. 
Phys.Rev.Lett.86:2802-2805,2001.

• Search for neutrino interactions in Lunar surface using 
radio

• Antarctic Ice Experiment – RICE, ANITA
• Underground Saltdome Shower Array (SalSA) for super-

GZK cosmic neutrino detection 



Neutrinos: The only useful messengers 
for astrophysics at >PeV energies

• Photons lost above 30 TeV:
pair production on IR & 
μwave background 

• Charged particles: scattered 
by B-fields or GZK process 
at all energies

• But the sources extend to  
109  TeV !

Conclusion:
• Study of the highest energy 

processes and particles 
throughout the universe 
requires PeV-ZeV neutrino 
detectors

Region not observable
In photons or
Charged particles



NRC, “Neutrinos and Beyond” 2003

Comparison between Cosmic EM and Neutrino Spectrum



UHECR: “How do cosmic accelerators 
work and what are they accelerating?”

• UHECR: Top-down or 
bottom-up?

• If bottom-up, what 
accelerates the cosmic 
particles? 

• Where are the sources? 
• GZK neutrino spectrum 

and directions 
indispensable 

Every Neutrino points back
to its source !



The Askaryan Effect
UHE event will induce an e/γ shower:

In electron-gamma shower in matter, there will be ~20% more 
electrons than positrons.

Compton scattering:  γ + e-(at rest) → γ + e-

Positron annihilation: e+ + e-(at rest) → γ +γ

lead

e-

ννν dd
dPCR ∝

In solid material RMoliere~ 10cm.
λ>>RMoliere (microwaves), coherent

⇒ P∝ N2



SLAC Characterization of Askaryan Effect

• 2000 & 2002 SLAC Experiments confirm extreme 
coherence of Askaryan radio pulse

• 60 picosecond pulse widths measured for salt showers.  
Unique signal reduces background, simplifies 
triggering, excellent timing for reconstruction.

Ultra-wideband data on Askaryan pulse

SLAC FFTB



ANITA: Antarctic Neutrino Transient Antenna



ESTA: End Station Test of ANITA
SLAC-ANITA Collaboration               Expected date: June 2006



ESTA Ice Target



SalSA: Saltdome Shower Array

SalSA sensitivity, 3 yrs live:
70-230 GZK neutrino events

A large sample of GZK neutrinos using radio antennas in a 12x12 
array of boreholes natural Salt Domes



2. Investigation of Dynamics



Length Scales
← Compton Scale

HEP
Hydro Scale →

ShocksPlasma scale
λD, λp, rL

>> 14 orders of magnitude

Can intense neutrino winds 
drive collective and kinetic 
mechanisms at the plasma 
scale ?

Bingham, Bethe, Dawson, 
Su (1994)



Equations for electron density perturbation driven by electron beam, 
photon beam, neutrino beam, and Alfven shocks are similar

Plasma Waves Driven by Different Sources
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All these processes can in principle occur in astro jets.



1. Supernova Electroweak Plasma Instability

ShockNeutrino-plasma coupling

Neutrinosphere

(proto-neutron star)

Plasma pressure

* R. Bingham, J. M. Dawson, H. Bethe,          
Phys. Lett. A, 220, 107 (1996)            
Phys. Rev. Lett., 88, 2703 (1999)

• 99% of SN energy is carried by 
neutrinos from the core

• Single-particle dynamics unable 
to explain explosion 

• ν-flux induced collective 
electroweak plasma instabilities 
load energy to plasma efficiently*

Use laser/e-beam to simulate 
ν- flux induced two-stream 
instability, Landau damping, 
and Weibel instability



2. Cosmic Acceleration
• Conventional cosmic acceleration mechanisms encounter limitations:

- Fermi acceleration (1949) (= stochastic accel. bouncing off B-fields)
- Diffusive shock acceleration (70s) (a variant of Fermi mechanism)
Limitations for UHE: field strength, diffusive scattering inelastic

- Eddington acceleration (= acceleration by photon pressure)
Limitation: acceleration diminishes as 1/γ

• New thinking:
- Zevatron (= unipolar induction acceleration) (R. Blandford)    
- Alfven-wave induced wakefield acceleration in relativistic plasma

(Chen, Tajima, Takahashi, Phys. Rev. Lett. 89 , 161101 (2002).) 
- Weibel instability-induced induction and wakefield acceleration  

(Ng and Noble, Phys. Rev. Lett., March 2006)
- Additional ideas by M. Barring, R. Rosner, etc 



(Chen, Tajima, and Takahashi, PRL, 2001)

• Generation of Alfven waves in relativistic plasma flow
• Inducing high gradient nonlinear plasma wakefields
• Acceleration and deceleration of trapped e+/e-

• Power-law (n ~ -2) spectrum due to stochastic acceleration 

Alfven-Shock Induced Plasma Wakefield 
Acceleration

e+e–
Laser e–

e+

1 m

B0

Spectrometer

Bu

Solenoid

Undulator



3. Relativistic Jet-Plasma Dynamics

Relativistic jets commonly observed in powerful sources

A key element in models of cosmic acceleration

An understanding of their dynamics is crucial.

Gamma Ray Burst 
Blast Wave Model [Meszaros, 2002]



3D PIC Simulation Results: Overview

1. Transverse dynamics (same for continuous and short jets):
Magnetic filamentation instability: inductive Ez
Positron acceleration; electron deceleration

2. Longitudinal dynamics:
Electrostatic “wakefield” generation (stronger in finite-length jet)
Persists after jet passes: acceleration over long distances.



Particle Acceleration and Deceleration

Longitudinal momentum distribution 
of positrons and electrons for a 
finite-length jet at three simulation 
time epochs.

t in units of 1/ωp

~ half of positrons gained >50%
In longitudinal momentum (pz)

(For details see my talk
in Working Group C)



3. Probing Fundamental Physics



1.Event Horizon Experiment
Chen and Tajima, PRL (1999)



A Conceptual Design of an Experiment 
for Detecting the Unruh Effect



2. Probing Extra Spacetime Dimension?
• In standard theory of gravity, the Planck scale is at 

Mp ~ 1019 GeV, or Lp ~ 10-33 cm.
• Assuming large extra dimensions, then Mp

2 ~ RnM*
n+2, and  

R ~ (Mp/M*)(n+2)/nLp.
• If  M* is identified with the electroweak, or TeV, scale, then

R ~ 1032/n – 17 cm.            (For n=6, R ~ 10-12 cm.)
• Distance from accelerating detector and the event horizon,

d ~ c2/a ,
can probe extra spacetime dimension. 

• State-of-the art laser can probe up to n=3.
a

c2/a



SUMMARY

• History has shown that symbiosis between direct observation 
and laboratory investigation instrumental in the progress of 
astrophysics.

• Recent advancements in Particle astrophysics and cosmology 
have created new questions in physics at the most fundamental 
level

• Many of these issues overlap with high energy-density physics.
• Laboratory experiments can address many of these important 

issues
• Laser and particle beams are powerful tools for Laboratory 

Astrophysics
• Three categories of LabAstro: Calibration of observations, 

Investigation of dynamics, and Probing fundamental physics.
Each provides a unique value to astrophysics.



March 15 (Wed.)

WG Parallel Session 1 (11:00-12:00) 
Pierre Sokolsky (Utah), "Some Thoughts on the Importance of Accelerator  

Data for UHE Cosmic Ray Experiments" 
Pisin Chen (KIPAC, SLAC), "ESTA: End Station Test of ANITA" 

WG Parallel Session 2 (13:30-15:00) 
Robert Bingham (RAL, UK), "Tests of Unruh Radiation and Strong Field 

QED Effects"* 
Anatoly Spitkovsky (KIPAC, SLAC), "Pulsars as Laboratories of Relativistic Physics," 
Eduardo de Silva (KIPAC, SLAC), "Can GLAST Provide Hints on GRB Parameters?" 

WG Parallel Session 3 (15:30-17:00) 
Robert Noble (SLAC), "Simulations of Jet-Plasma Interaction Dynamics"* 
Johnny Ng (KIPAC, SLAC), "Astro-Jet-Plasma Dynamics Experiment at SABER"* 
Kevin Reil (KIPAC, SLAC), "Simulations of Alfven Induced Plasma Wakefields"*

LabAstro Working Group Program



March 16 (Thur.) 

WG Parallel Session 4 (08:30-10:00) 
Bruce Remington (LLNL), "Science Outreach on NIF: Possibilities for 

Astrophysics Experiments"
Bruce Remington (LLNL), "Highlights of the 2006 HEDLA Conference" 
**Round Table Discussion**, "Considerations of Labaratory Astrophysics" 

WG Summary Preparation (10:20-12:00) 

*Tentative title 

LabAstro Working Group Program
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