Detector and Physics Simulation Summary

Tony Johnson (SLAC) 27 August 2005

Detector and Physics Simulation Summary

- Simulation group did a lot of work preparing for Snowmass
 - 2 CD's with Software and tutorials distributed
 - 1 DVD with simulation data from 3 detector concepts
- Simulation group only had one formal session
 - Experience shows that simulation sessions in parallel to physics/detector session attract limited attendance
- Remainder of time spent "working"
 - Running software tutorial sessions
 - Working with individual users
 - Working with physics/detector groups
 - Taking opportunity to work together on improvements to tools
 - Improving functionality of existing tools
 - Testing interoperability/compatibility of existing tools
 - Refining standards (e.g. LCIO)

Tools Overview

	Description	Detector	Language	IO-Format	Region
Simdet	fast Monte Carlo	TeslaTDR	Fortran	StdHep/LCIO	EU
SGV	fast Monte Carlo	simple Geometry, flexible	Fortran	None (LCIO)	EU
Lelaps	fast Monte Carlo	SiD, flexible	C++	SIO, LCIO	US
Mokka	full simulation - Geant4	TeslaTDR, LDC, flexible	C++	ASCI, LCIO	EU
Brahms-Sim	Geant3 - full simulation	TeslaTDR	Fortran	LCIO	EU
SLIC	full simulation - Geant4	SiD, flexible	C++	LCIO	US
LCDG4	full simulation - Geant4	SiD, flexible	C++	SIO, LCIO	US
Jupiter	full simulation - Geant4	JLD (GDL)	C++	Root (LCIO)	AS
Brahms-Reco	reconstruction framework (most complete)	TeslaTDR	Fortran	LCIO	EU
Marlin	reconstruction and analysis application framework	Flexible	C++	LCIO	EU
hep.lcd	reconstruction framework	SiD (flexible)	Java	SIO	US
org.lcsim	reconstruction framework (under development)	SiD (flexible)	Java	LCIO	US
upiter-Satelite	reconstruction and analysis	JLD (GDL)	C++	Root	AS
LCCD	Conditions Data Toolkit	All	C++	MySQL, LCIO	EU
GEAR	Geometry description	Flexible	C++ (Java?)	XML	EU
LCIO	Persistency and datamodel	All	Java, C++, Fortran	-	AS,EU,US
JAS3/WIRED	Analysis Tool / Event Display	All	Java	xml,stdhep, heprep,LCIO,.	US,EU

• •

LCIO

1.5 years ago we realized not possible or desirable to force everyone to use single tool

Decided to collaborate to define single persistency framework

All major simulation programs now read/write LCIO

- Makes possible cross-checks between simulation programs
- Makes possible sharing reconstruction algorithms
- Makes possible writing one physics analysis and using it with
 - FastMC/Full simulation-reconstruction
 - Different detector concepts
 - Different simulation/reconstruction tools

Full Simulation Tools

Geant4, StdHep and LCIO are common feature
Support for LCPhys physics lists

Each aims to be generic with different different approach

 \rightarrow different ways to define geometries

Geant4 Physics Verification

JE (%)

Reconstruction/Analysis Tools

Common features, LCIO input and output, geometry independent algorithms
Digitization, Tracking, Clustering/PFA, Vertexing, Jet finding, Cheaters, FastMC
Each aims to be generic with different different approach

→ different ways to define geometries

Interoperability - Event Display

Interoperability: Reconstruction

- -

Interoperability: Diagnostics

Areas for Continued Collaboration

- Geant4 validation/physics lists
- Geometry Formats
 - As reconstruction frameworks have matured geometry systems have grown closer
- ILCGrid for sharing resources for event simulation/reconstruction?
- LCIO, Interoperability
- Validation tools (c.f. SlicDiagnostics)
- Simulation workshop next winter?

Conclusions

- Full simulation and reconstruction frameworks are available
 - All support flexible geometry for experimenting with detector concepts
 - Still plenty of work to do, especially on optimized reconstruction for detector concepts
 - State of full simulation/reconstruction is quite advanced for this stage of project
 - Available tools, combined with hardware R&D make possible realistic comparison of detector concepts

- Where to go for more information/help
 - http://www.lcsim.org/software/
 - Comprehensive list of simulation and reconstruction software
 - Links for documentation, CVS, etc.
 - <u>http://forum.linearcollider.org/</u> discussion/help forum