Summary of the Top/QCD Working Group

Convenors: Aurelio Juste, Yuichiro Kiyo, Frank Petriello, Thomas Teubner

- Introduction
- Top quark Threshold studies
- News about $tar{t}H$
- Anomalous top couplings
- QCD: Jets & $lpha_s$ at the ILC
- Conclusions

Motivation: Why is the top quark so interesting?

- Top quark sector of the SM is NOT established yet!
 - Possible anomalous couplings in $tbW, t\bar{t}Z/\gamma$
 - Does the top mass come from a single Higgs? $(y_t \Leftrightarrow m_t)$
- Top quark plays a key role in EWSB
 - Many models distinguish top from light quarks
 - Precise top mass determination is clue to New Physics

MSSM parameters varied SM Higgs varied (Heinemeyer+Weiglein Snowmass)

Motivation: α_s measurement

- High precision α_s determination is crucial for accurate prediction of signal/background processes.
- α_s the least precise input for coupling unification in SUSY, GUT's:

Threshold $t\bar{t}$ production; $E \equiv \sqrt{s} - 2m_t \sim 0$

Incredible experimental and theoretical precision is possible!

- Threshold scan of $\sigma(e^+e^- \to t\bar{t})$
 - Simple counting experiment of color singlet $t\bar{t}$ events
- $\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\rm QCD} \Rightarrow$ no hadronization
- $p_t = m_t v \approx 30 \,\text{GeV} \gg \Lambda_{\text{QCD}} \Rightarrow t\bar{t}$ calculable perturbatively

Threshold cross section requires resummation of $\alpha_s/v \sim \mathcal{O}(1)$

$$\checkmark \sigma_{LO} \sim 1 + \frac{\alpha_s}{v} + (\frac{\alpha_s}{v})^2 + \dots \sim \Sigma_n \left(\frac{\alpha_s}{v}\right)^n$$
$$\checkmark \sigma_{\text{NLO}} \sim \Sigma_n \, \alpha_s \times (\frac{\alpha_s}{v})^n$$
$$\checkmark \sigma_{\text{NNLO}} \sim \Sigma_n \, \alpha_s^2 \times (\frac{\alpha_s}{v})^n$$

 \Rightarrow per mille top quark mass determination, $\Delta m_t \lesssim 50~{\rm MeV}$

- NNLO was completed by several groups
 Hoang+T; Penin et al; Melnikov et al; Beneke et al; Sumino et al; Yakovlev
- First result towards NNNLO calculation: Y. Kiyo, et al.
- Renormalization Group resummation: A. Hoang, et al. $\sigma_{NNLL} \sim \alpha_s^2 \left(\frac{\alpha_s}{v}\right)^n \times \left(\alpha_s \ln(v)\right)^m \Rightarrow \Delta \sigma_{t\bar{t}} \simeq 20\% \to 6\%$

- Consistent treatment of EW effects near threshold
- top width beyond $E \to E + i\Gamma_t$, non-resonant $W^+ b W^- \overline{b}$ contr.
- first result within effective field theory: A. Hoang, et al.
- see also talk from G. Zanderighi

Differential observables

Not only $\sigma_{t\bar{t}}$ but also differential observables are important!

- Needed for Monte Carlo event generators
- Experimental cuts require exclusive cross section
- Make full use of experimental info with $A_{FB}, d\sigma_{t\bar{t}}/dp_t, \vec{s}_t$
- additional constraints on $m_t, \alpha_s, \Gamma_t(, y_t)$
- reduce correlations
- N(N)LO QCD corrections are available for these observables

Top Threshold: experimental studies

9+1 point threshold scan at TESLA ($\mathcal{L} = 300 \text{ fb}^{-1}$):

Martinez + Miquel

Use of σ_{tot} , peak of the top momentum distribution and A_{FB} as observables:

* Exp. accuracy with multi-parameter fit (3% TH-error on σ_{tot} , beam spectrum known):

 $\rightarrow \Delta m_t \sim 20 \text{ MeV}, \Delta \Gamma_t \sim 30 \text{ MeV}, \Delta \alpha_s \sim 0.0012$

But: impact of limited knowledge of beam spectrum?

- Average c.m. energy $\langle \sqrt{s} \rangle$
 - Use of energy spectrometer → WG4
 - Calibrate with radiative return $(Z\gamma)$
- Luminosity spectrum $\frac{dL}{d\sqrt{s}}$
 - Measure Bhabha acollinearity

 → Th.: Higher orders in MC's? (A. Penin)
 → Detector precision for Bhabha?
 [Forward calorimeter ok for FSR?]
- Calculation of Initial State Radiation → Theoretical precision of ISR MC's?
- Effect on top cross section:

$$\sigma^{\rm obs}(\sqrt{s}) = \frac{1}{L_0} \int_0^1 L(x) \,\sigma(x\sqrt{s}) \,\mathrm{d}x$$

- Effect on top cross section:
- Loss in effective luminosity
- Shift in top mass; dominant systematic error?
- New simulation of beam spectrum:
- $\sqrt{s}=350~{\rm GeV}$ different from higher energies
- new luminosity spectrum parameterization
- will allow detailed study of systematic effects
- Top threshold is the benchmark for high precision analysis; impressive progress, but many details remain to be clarified.
 → Other cases (W⁺W⁻, SUSY thresholds) will benefit.
- ▶ Project started at Snowmass for updated full analysis:
 - use of differential distributions at (N)NLO
 - higher order MC for fully differential cross section
 - realistic beam spectrum; related systematics
- Error estimates (Th + Exp) are becoming reliable!

Top-Higgs Yukawa Coupling Measurement: Overview

- Largest coupling of the Higgs boson to fermions: g_{ttH} ~ 0.7 vs g_{bbH} ~ 0.02.
 Precise measurement very important since the top quark is the only "natural" fermion from the EWSB standpoint.
- Most promising method via σ_{ttH} measurement: $\sigma(e^+e^- \rightarrow t\bar{t}H) \sim g_{ttH}^2$ Experimentally very challenging:
 - Spectacular signature: e.g. in H \rightarrow bb decay mode \Rightarrow 8j or Iv+6j (4 b-jets)
 - Very low rate: σ_{ttH} ~0.2(2.0) fb at \sqrt{s} =500(800) GeV for m_H=120 GeV.
 - Background more than 3 orders of magnitude larger: dominated by tt+jets
- LHC (⊕ ILC input): ∆g_{ttH}/g_{ttH}~12% for m_H=120-190 GeV, L=2x300 fb⁻¹. *M. Dührssen et al.*
- ILC direct measurement:

 $\sqrt{s}=800 \text{ GeV}, L=1000 \text{ fb}^{-1}, \Delta g_{ttH}/g_{ttH}\sim 6(10)\% \text{ for } m_{H}=120(190) \text{ GeV}$

A. Juste and G. Merino (hep-ph/9910301) A. Gay et al (4th ECFA/DESY Workshop)

Very important to investigate the sensitivity at $\sqrt{s}=500$ GeV (baseline machine). A preliminary estimate (from 2002):

```
\sqrt{s}=500 \text{ GeV}, L=1000 \text{ fb}^{-1}
\Delta g_{ttH/}g_{ttH}\sim 24\% \text{ for } m_{H}=120 \text{ GeV}
```

A. Juste, Chicago LC Workshop, January 7-9, 2002

Work started at Snowmass to re-evaluate this estimate

Impact of tt Threshold Effects on ttH

 At √s=500 GeV and for m_h≥120 GeV, the phase space region where the tt system is non-relativistic is enhanced.

Important to take into account velocityresummation effects (like at tt threshold).

- \Rightarrow Cross section enhancement.
- NLL effects implemented in MC generator via E_H-dependent K-factor:

\sqrt{s}	$\overline{f} = 500 \mathrm{GeV},$	$m_t^{1S} = 180 \mathrm{GeV}, \mathrm{m_H}$	= 120 GeV
$\sigma_{ttH}(fb)$	Born	Born x K-factor	Increase
no ISR/BS	0.157(1)	0.357(2)	x2.27
BS	0.106(1)	0.252(3)	x2.38
ISR+BS	0.0735(8)	0.179(2)	<u>x2.44</u>

Large effect of ISR+Beamstrahlung.
 Possible optimization of BS vs luminosity?

Increase in cross section by ~x2.4 relative to Born.

Impact of Beam Polarization on ttH

Baseline machine: |P(e⁻)| ~ 0.8
 Option: add positron polarization |P(e⁺)| ~ 0.6

Existing feasibility studies have not exploited beam polarization

- Choice of signs for P(e⁻) and P(e⁺) can only be done once the sign of A_{LR} is known
 - \Rightarrow A_{LR} must be measured first.
- For SM-like A_{LR}, optimal (realistic) beam polarization:

 $[P(e^{-}),P(e^{+})] = [-0.8,+0.6]$

 \Rightarrow increase in cross section relative to the unpolarized case by x2.1

Additional motivation for positron polarization be part of the baseline machine.

 g_{ttH} measurement requires %-level and model-independent determination of ttγ and ttZ couplings. This typically benefits from changing beam polarization. Desirable to optimize strategy to maintain cross section enhancement for ttH.

Top-Higgs Yukawa Coupling Measurement: Projection

- Folding into the previous estimate the new enhancement factors:
 - x2.4 from NLL prediction
 - x2.1 from beam polarization

the preliminary estimated uncertainty on the top-Higgs Yukawa coupling measurement at \sqrt{s} =500 GeV is:

$$\left(\frac{\Delta g_{tth}}{g_{tth}}\right) \approx 12\%$$
 for m_H=120 GeV, L=1000 fb⁻¹

- Next step: redo feasibility study making an optimal use of b-tagging and kinematic information.
- There is a good chance that uncertainties ≤10% can be achieved for moderate m_H values (assuming L=1000 fb⁻¹). <u>Stay tuned!</u>

Anomalous couplings

- To explore connection to EWSB, search for anomalous couplings to EW gauge and Higgs bosons
- General form of ttV ($V = Z, \gamma$) vertex:

ttV at the LHC and the ILC

U. Baur

- Example: LHC (ILC) can measure F_{1Z} to 50% (1%), F_{2Z} to 8% (1%)
- Improvement from e⁻ polarization by a factor of 2-3 (talk by G. Moortgat-Pick)
- Positron polarization not studied are needs to be done!
- ! Correlated analysis done only for LHC; ILC study varies couplings independently

tbW and precision form factors

- Can measure V_{tb} to $\approx 8\%$ at the LHC (Stelzer et. al.)
- Can measure top width from threshold scan, but hard to access V_{tb} at an e^+e^- machine
- New proposal: determine V_{tb} from $e^+e^- \rightarrow tt^*$, with one top off-shell (T. Tait)
- \Rightarrow with top off-shell, dependence on Γ_t decreases
- ⇒ 4.3 fb⁻¹ at 320 GeV before cuts, efficiencies ⇒ worth studying further

9	New calculation:	Two-loop	corrections to	heavy qua	rk form	factors (7	. Gehrmann	et.	al.)
---	------------------	----------	----------------	-----------	---------	------------	------------	-----	-----	---

	top ($\mu = m_t$)	bottom ($\mu = m_b$)	bottom $(\mu = m_Z)$
$(g-2)_Q^{\gamma,(1l)}$	$1.53\cdot 10^{-2}$	$-1.52 \cdot 10^{-2}$	$-8.4 \cdot 10^{-3}$
$(g-2)_Q^{\gamma,(2l)}$	$4.7\cdot10^{-3}$	$-1.00 \cdot 10^{-2}$	$-6.6 \cdot 10^{-3}$
$(g-2)_Q^{Z,(1l)}$	$5.2\cdot 10^{-3}$	$-1.87 \cdot 10^{-2}$	$-1.03 \cdot 10^{-2}$
$(g-2)_Q^{Z,(2l)}$	$1.6 \cdot 10^{-3}$	$-1.24 \cdot 10^{-2}$	$-8.1 \cdot 10^{-3}$
$(g-2)_Q^\gamma$	$2.00\cdot 10^{-2}$	$-2.52 \cdot 10^{-2}$	$-1.50 \cdot 10^{-2}$
$(g-2)_Q^Z$	$6.8\cdot10^{-3}$	$-3.11\cdot10^{-2}$	$-1.85\cdot10^{-2}$
$G_{1,Q}$	$1-2.29\cdot10^{-2}$	$1 - 6.91 \cdot 10^{-2}$	$1 - 4.3 \cdot 10^{-2}$

- QCD shifts reach 3%
- Must account for in precision analyses
- Much more work needed for precision description of top in the continuum!

Jets and α_s at the ILC

Current limiting factor for α_s extraction from 3 jet event shapes is theory:

 $\alpha_s(M_Z) = 0.1202 \pm 0.0003 \,(\text{stat}) \pm 0.0009 \,(\text{sys}) \pm 0.0009 \,(\text{had}) \pm 0.0047 \,(\text{theory})$

Current theory is NLO; effort underway to obtain NNLO result (A. Gehrmann-De Ridder, T. Gehrmann et. al.)

Subprocess	partonic final state	partons in jets
$\gamma^* \rightarrow 3$ partons, 2 loop e.g.	3 partions	(1) (1) (1)
$\gamma^+ \rightarrow 4$ partons, 1 loop e.g.	4 partions (3+1) partions	(2) (1) (1) (1) (1) (1)
$\gamma^+ \rightarrow 5$ partons, tree	5 partions	(3) (1) (1)
~ accesse	(4+1) partons	(2) (1) (1)
62222	(3+2) partons	(1) (1) (1)

- Complicated singular structure; at the frontier of perturbation theory
- Numerical results obtained for some color structures
- C_F^2 NNLO < 1 T > coefficient: -20.4 \pm 4
- Estimated theory error after calculation: 2%

! Need more study of experimental aspects; calorimeter granularity, jet energy requirements?

Promising methods for 1% extractions of α_s at the tt threshold and using R at Giga-Z (M. Winter)

Conclusions

Small but active group

- Several projects started at Snowmass: new tt threshold studies, ttH Yukawa measurement at 500 GeV, survey of new physics predictions for top properties, tbW anomalous couplings below threshold, ...
- Need participation of more experimentalists!!
- Thanks to all our speakers and participants: Kaustubh Agashe, Malgorzata Awramik, Uli Baur, Carola Berger, Stewart Boogert, Jose Cembranos, Lance Dixon, Aude Gehrmann-De Ridder, Thomas Gehrmann, Steve Godfrey, Sonja Hillert, Andre Hoang, Swapan Majhi, Kirill Melnikov, Gudi Moortgat-Pick, Carmine Pagliarone, Michael Peskin, Peter Skands, Zack Sullivan, Tim Tait, Giulia Zanderighi

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.