The Silicon Detector Concept

H.Aihara University of Tokyo

2005 International Linear Collider Physics and Detector Workshop, Snowmass, Colorado, August 14-27, 2005

What is SiD ?

- A detector concept based on Si/W calorimeter and Si tracker.
- Silicon detector is
 - fast,
 - robust against background,
 - fine in segmentation, and by now
 - mature.

Time Structure and Event Rates

There are five trains of 2820 bunches per second (nominal).

Must have a Silicon device (either the tracker or Ecal) to identify the right bunch crossing. True for any of concept studies !!

SiD

- Pixel Vertex detector
- Si trackder
- Si/W is for the ECAL and digital calorimetry for HCAL
- All within 5T magnet
- plus instrumented flux return as a muon detector
- Results in the smallest of the three detector concepts

~ 12m x 12m x 12m

Tracker Impact parameter resolution : $\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10 / (p \sin^{3/2} \theta) \mu m$ $: \sigma_{P_T} / P_T^2 \approx 5 \times 10^{-5} (\text{GeV}^{-1})$ Momentum resolution

Vertex Detector

- 5-layer / 4-disk detector covering $R_{in} = 14 \text{ mm to } R_{out} = 60 \text{ mm}$
 - To tag b- and c- jets and tau-leptons with high efficiency reducing background
 - To efficiently perform heavy quark sign selection, via the vertex charge

Barrels

- Five barrels
- 24-fold phi segmentation
- two sensors covering 6.25 cm each
- All barrel layers same length

Disks

- Four disks per end
- Inner radius increases with Z
- Support
 - Supported from beampipe

Barrel Design Vertex Detector

- Generic option employs CCD readout:
 - 15 20 μm pixel size
 - 10⁹ pixels for barrel detector
 - \blacksquare R_{in} = 14 mm (cf. 25 mm SLD, 15mm Belle)
 - Layer thickness of 0.1% X₀ per layer !
 - **20** μ m of Si is 0.02% X₀

- Disadvantage of CCD readout is that it is slow
 - 20% occupancy in inner layer if integrated over a train
 - Significant concert regarding EMI (SLD experience)
 - Many different alternative technologies (CMOS) being pursued
 - DEPFET
 - MAPS
 - HAPS
 - FAPS

 - Sol

...

Beampipe radius a critical parameter, which is determined by the background from e⁺e⁻ -pairs

- Five barrel layers

 r = 1.4, 2.6, 3.7, 4.8, 6.0cm
 z = +/- 6.25 cm
- Four endcap layers z = 7.0, 9.5, 12.0, 17cm

500GeV nominal in 5 Teşla and 20 mrad Xing

Average and RMS of VXD hits over 20 bunches

Full simulation

- ~10% more hits in 20 mrad crossing angle
- But the difference is small compared to the bunch-to-bunch fluctuation.
- ~30% more hits if no lowz.
- 300 hits/BX (layer #1)
 0.027 hits/mm²/BX
 77 hits/mm²/Train

Silicon Outer Tracker

5-Layer silicon strip outer tracker, covering R_{in} = 20 cm to R_{out} = 125 cm, to accurately measure the momentum of charged particles

- Support
 - Double-walled CF cylinders
 - Allows full azimuthal and longitudinal coverage
 - Barrels
 - Five barrels, measure Phi only
 - Eighty-fold phi segmentation
 - 10 cm z segmentation
 - Barrel lengths increase with radius

Disks

- Five double-disks per end
- Measure R and Phi
- varying R segmentation
- Disk radii increase with Z

Material Budget

With current design, possible to stay within 0.8% X₀ per layer at normal incidence

• Begin with

all combinations of 3D VXD hits.

• Attach hits in tracker in 2D

space to find tracks.

Preliminary study of performance based on GEANT4 (single track study)

 $\sigma_{\text{intrinsic}} \approx 7 \mu \text{m/point}$ Multiple scattering included ₁₄

Calorimeter

Jet energy resolution :
$$\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E(\text{GeV})}}$$

Particle Flow Algorithm

- Measure energies of individual particles, not energy deposition in cal modules.
- Pattern recognize to perform the neutral-charged particle separation in the calorimeter, followed by a substitution of the charged energy with the corresponding measurement from the tracker
 - Step I: Track Calorimeter cluster matching
 - I dentify calorimeter cells belonging to shower from charged track
 - Algorithm based on 'tubes'
 - Use track momentum and eliminate calorimeter cells
 - Step II: Photon Identifier
 - I dentify photons in ECAL
 - Use longitudinal and lateral shower profile
 - Step III: Measure neutral hadron energy
 - Excluding charged and em neutrals, apply cone jet algorithm
 - I dentify remaining cells as energy from neutral hadrons

Requires fine lateral and longitudinal segmentation and large BR²

Proof of Principle

Particle Flow Algorithm applied with the CDF detector

- Use Photon + Jet data
- Apply PFA
- Plot balancing jet energy resolution as function of photon p_T

Jet energy resolution improved:

$$\sigma_{\rm E}/{\rm E} = 83\% / \sqrt{\rm E}$$
 (old)

 $\sigma_{\rm E}/{\rm E} = 64\% / \sqrt{\rm E}$ (new)

■ However, it is not clear if a resolution of 30% / √E is achievable

EM Calorimeter

- P-Flow requires high transverse and longitudinal segmentation and dense medium
- Choice: Si-W can provide 5 x 5 mm² segmentation and minimal effective Molière radius

Absorber	X ₀ [cm]	R _M [cm]
Aluminum	9.05	4.7
Copper	1.44	1.6
Tungsten	0.35	0.9
Lead	0.58	1.6

hexagonal SI wafers

EM Calorimeter Configuration

- Silicon from 6" wafers
 - p-on-n silicon
 - 300 μm thick
 - ~ 2000 m² of silicon
- Transverse segmentation
 - **5** mm hexagonal pixels
 - 1mm gaps for Si and readout:
 R_m (effective) = 14 mm
- Longitudinal segmentation
 - **30** Layers, 0.25cm thick W, $5/7 X_0 / \text{ layer}$
- Readout through one ASIC per wafer
 - 1024 channels per wafer

EM Readout

- ASIC bump bonded to silicon wafer
 - Double metal layer in silicon
- Performance requirements
 - Dynamic range: 0.1 to 2500 MIPs
 - Two ranges
 - S/N > 20
 - Capacitance
 - Pixels: 5.7 pF
 - Traces: ~0.8 pF per pixel crossing
 - Load up to C_L = 40 pF on input amplifier

Output

- Fully digitized, zero suppressed
- Pulse height + time buffered 4-deep to accommodate multiple hits along train

Power

- I < 40 mW/wafer ⇒ power cycling (An important LC feature!)
- ENC = 200 + 30*C_L

Rows of bumpbonds

Bonus Tracking Calorimeter

Can track particles from "the outside-in", starting in the calorimeter
 Track from outside in: K⁰_s and Λ *or* long-lived SUSY!

Digital sampling HCAL

- Digital calorimetry works due to
 - Low density of hadronic showers
 - Linear response to single hadrons
 - Single particle resolution preserved
 - Landau tail reduced

Based on Geant4 simulations, digital readout, 1cm² readout pads

Single Particle Resolution 5 GeV π^+ , 1 cm² pads

Total CAL ESum, Hthreshold

Slide 22

Resistive Plate Chambers

ANL DHCAL with RPC's are the baseline technology for the SiD Boston Glass as resistive plates; Freon-Isobutane-SF6 as active medium Chicago **FNAL** Transverse segmentation 1cm x 1cm lowa **ITEP**, Moscow Pick-up pads Graphite Signal ΉV **Resistive plates** Gas

RPC

- EM showers narrow in RPC's
- Had. showers narrow in RPC's
 - Density of gas too low for sizeable neutron cross section
 - Energy deposition has no slow component

- Current parameters:
 - Inside the coil
 - R_i = 139 cm, R_o = 237 cm
 - **Thickness of 4\lambda**
 - 34 layers of 2.0cm steel
 - One cm gap for active medium
 - Transverse segmentation
 - 1 x 1 cm²

Solenoid

To retain BR², solenoid with B(0,0) = 5T (not done previously)
 Clear Bore Ø~ 5m; L = 6 m: Stored Energy ~ 1.4 GJ

■ For comparison, CMS: 4 T, Ø = 6m, L = 13m: 2.7 GJ

Solenoid

Initial feasibility completed by Fermilab, preconceptual design based on CMS

- Credible approach to conductor/winding design
- Credible engineering approach for industrial fabrication and cost estimates
- More conservative design than CMS : go from 4 winding layers to 6
 - I(CMS)= 19500 A, I(SiD) = 18000 A

Detector Optimization needs Detector Costs

Some Critical Unit Costs

BR² Fixed, Vary R_{Trkr}

Si Detector (trkr and Ecal)	$2.00/cm^{2}$
Ecal W	\$75/kg
Hcal, Muon Detectors	$2000/m^{2}$
Electronics	(\$100+100 install)/Chip
Solenoid	$0.81(MJ)^{0.662}M$
Flux return Fe	\$3.48/kg

Cost drivers

R_{trkr}=1.25m is optimum.

Current SiD organization

Design Study Coordinators

J. Jaros and H. Weerts Asian and European Contact Persons H. Aihara and Y. Karyotakis

SiD Executive Committee

Design Study Coordinators SiD R&D Coordinator A. White Godfathers M. Breidenbach and J. Brau

SiD Advisory Group

SiD Executive Committee Working Group Leaders

SiD Working Groups

Benchmarking (T. Barklow), Calorimetry (R. Frey, J. Repond), Costs (M. Breidenbach), Magnet/Flux Return (R. Smith), Muons (soon!), Simulation (N. Graf), Tracking (M. Demarteau, R. Partridge), Vertexing (D. Su), MDI (P. Burrows, T. Tauchi)

Conclusion

- The (almost) all silicon SiD concept is an aggressive approach to a compact ILC detector.
- Fast and robust.
- Cost control in place.

