Physics requirements for GigaZ

Klaus Mönig

What is GigaZ?

Running on the Z with high luminosity for 10^9 recorded Z decays

- Reachable luminosity: $\mathcal{L} = 5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$ $\Rightarrow \sim 50 - 100 \text{ days for } 10^9 \text{ Zs}$
- Beamstrahlung loss (outgoing beam): $\delta_b = 0.1\%$
- Depolarisation: $\Delta \mathcal{P} = 0.1\%$
 - \implies placement of polarimeters not really an issue
- Z-rate: 100-200 Hz
- Additional requirements (motivation in this talk)
 - polarised electron and positron beam
 - $-\operatorname{very}$ high precision on polarisation and beam energy
 - -very low beam energy spread

Physics motivation of GigaZ

- $\sin^2 \theta_{eff}^l$: Want to measure $\sin^2 \theta_{eff}^l$ from left-right asymmetry to $\mathcal{O}(10^{-5})$
- Z-lineshape: Improve Z-width by a factor two, cross section ratios by a factor three $(\Rightarrow$ factor two on $\Delta \rho$, factor three on α_s)
- \bullet Zbb couplings: improve factor 5-10 wrt. LEP
- $m_{\rm W}$: measure $m_{\rm W}$ to 6 MeV

Most sensitive observable is A_{LR} , so only this is discussed

$$A_{\rm LR} = \frac{1}{\mathcal{P}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_{\rm e} = \frac{2v_e a_e}{v_e^2 + a_e^2}$$
$$v_e/a_e = 1 - 4\sin^2\theta_{eff}^l$$

independent of the final state

Statistical error with 10^9 Zs: $\Delta A_{LR} = 4 \cdot 10^{-5}$

(for $\mathcal{P}_{e^-} = 80\%, \ \mathcal{P}_{e^+} = 0$)

Crucial ingredient: polarisation measurement

Error from polarisation: $\Delta A_{LR}/A_{LR} = \Delta \mathcal{P}/\mathcal{P}$

• only electron polarisation with $\Delta P/P = 0.5\% \Rightarrow \Delta A_{\text{LR}} = 8 \cdot 10^{-4}$ (Still factor three to SLD, but few million Zs are sufficient) • with positron polarisation $\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}}$

 \Rightarrow gain a factor four for $\mathcal{P}_{e^-}/\mathcal{P}_{e^+} = 80\%/60\%$ due to error propagation (even when error is 100% correlated between the polarimeters the gain is a factor three)

• even better with Blondel scheme:

$$\sigma = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\text{LR}} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$$

$$A_{\text{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

can measure $A_{\rm LR}$ independent from polarimeters with very small loss in precision and only 10% of the luminosity on the small cross sections $\Delta A_{\rm LR}$ as a function of the e^+ polarisation

For 10^9 Zs already 20% positron polarisation is better than a 0.1% polarimeter!

Crucial problem for Blondel scheme: Difference of absolute values of helicity states.

For $\mathcal{P} = \pm |\mathcal{P}| + \delta \mathcal{P}$: $dA_{LR}/d\delta \mathcal{P} = 0.5$ for e^- and e^+ separately

 \Rightarrow understand polarisation difference to $< 10^{-4}$

Many effects can be treated with a polarimeter with several channels with different analysing power

Polarisation correlations:

- the Blondel scheme assumes that the polarisations of the two beams are uncorrelated
- possible time correlations have to be tracked with polarimeters
- can there be spatial correlations from the beam transport?
- correlations from the beam-beam interactions are negligible (CAIN)

Definitely need positron polarisation to reach $\sin^2 \theta_{eff}^l$ goal

Electron polarisation

Effective polarisation

Other systematics

- Beam energy:
 - $-dA_{LR}/d\sqrt{s} = 2 \cdot 10^{-2}/GeV$ from γZ -interference
 - \rightarrow need $\Delta \sqrt{s} \sim 1 \text{ MeV}$ relative to $m_{\rm Z}$
 - \rightarrow need possibility for (frequent) m_Z scans
 - \rightarrow Need spectrometer with 10^{-5} relative precision around $m_{\rm Z}$
- Beamstrahlung: $\Delta A_{\rm LR} = 9 \cdot 10^{-4} (\rm TESLA)$
 - \Longrightarrow need to know be amstrahlung to a few %
 - -(should be ok with Bhabha acolinearity)
 - However if beamstrahlung is the same in $m_{\rm Z}\mbox{-scan}$ and $A_{\rm LR}\mbox{-running}$ corrections are automatic
 - if really needed beamstrahlung can be reduced for the price of lower luminosity
- Other systematics should be small

In total $\Delta A_{\rm LR} = 10^{-4} \Rightarrow \Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.000013$ Factor 13 to LEP/SLD

Z-scan observables

Assumptions:

- relative beam energy error around Z-pole: 10^{-5} $\Rightarrow \Delta \Gamma_Z / \Gamma_Z = 0.4 \cdot 10^{-3} \text{ (from } 0.9 \cdot 10^{-3} \text{ at LEP)}$
- selection efficiency for μs , τs , hadrons (and exp error on \mathcal{L}) improved by a factor three relative to the best LEP experiment $\Rightarrow \Delta R_{\ell}/R_{\ell} = 0.3 \cdot 10^{-3}$ (from $1.2 \cdot 10^{-3}$ at LEP)
- theoretical error on luminosity stays at 0.05% $\Rightarrow \Delta \sigma_0^{\text{had}} / \sigma_0^{\text{had}} = 0.6 \cdot 10^{-3} \text{ (from } 0.9 \cdot 10^{-3} \text{ at LEP})$ (this assumption requires luminosity measurement $\leq \text{LEP}$)

Effect of beamspread:

•
$$\Delta \Gamma_{\rm Z} / \Gamma_{\rm Z} = 7 \cdot 10^{-3}$$
 for $\sigma({\rm E_b}) = 0.1\%$

•
$$\Delta \sigma_0^{\text{had}} / \sigma_0^{\text{had}} = 5 \cdot 10^{-3} \text{ for } \sigma(\text{E}_{\text{b}}) = 0.1\%$$

• effects go quadratic with $\sigma(E_b)!$

→ Need $\sigma(E_b) < 0.1\%$ and understand $\sigma(E_b)$ to few %

Effect of beamstrahlung:

•
$$\Delta \Gamma_{\rm Z} / \Gamma_{\rm Z} = 10 \cdot 10^{-3}$$
 for TESLA default

- $\Delta \sigma_0^{\text{had}} / \sigma_0^{\text{had}} = 12 \cdot 10^{-3}$ for TESLA default
- effects go between linear and quadratic with beamspread depending on shape
- \Longrightarrow Need to know be amspread to few % as well

In principle both precisions are in reach for the Bhabha-acolinearity measurement

Threshold scan:

- Near threshold W-pair production is dominated by neutrino t-channel exchange
 - $\Rightarrow \beta$ -suppression gives high sensitivity to $m_{\rm W}$
 - \Rightarrow no (unknown) triple gauge couplings involved
- A six point scan around $\sqrt{s} =$ 161 GeV has been simulated with $\mathcal{L} = 100 \text{ fb}^{-1}$ (one year!!!)

- Efficiencies/purities assumed as at LEP
- Polarisations used to measure background/ enhance signal
 - $-\operatorname{need}\,\Delta\mathcal{P}/\mathcal{P}<0.25\%$
 - can use Blondel scheme on rad. ret. events if positron polarisation is available
 - $-\,A_{\rm LR}^{ff}(160)\,{\rm GeV}$ large, rapidly changing with \sqrt{s} and different for upand down-type quarks
 - \Rightarrow need to understand left-right asymmetry for selected background very well
- → $\Delta m_{\rm W} = 6$ MeV possible with 0.25% error on luminosity and efficiencies
 - error increases only to 7 MeV if efficiencies are fitted
- ▶ Need beam energy (relative to $m_{\rm Z}$) to $< 5 \cdot 10^{-5}$
- \rightarrow Need (at least) full 4-fermion 1-loop at threshold from theory

Physics gain from GigaZ

- $A_{\rm LR}$, lineshape parameters, $m_{\rm W}$ are important independent of each other
- Within the Standard Model (or SUSY) $A_{\rm LR}$ is the most important one
- For most extensions of the SM $m_{\rm W}$ has a high priority
- The lineshape parameters only get important for specific cases

Conclusions

- There exists a huge potential of GigaZ, especially in $\sin^2 \theta_{eff}^l$ and m_W
- However there are substantial requirements left:
 - positron polarisation
 - precision polarimetry
 - measurement of the beam energy
 - understanding of beamstrahlung and beamspread
 - understanding of > 1 Z multiplicities in a bunch train
 - –understanding of theory and experimental input parameters $(\alpha(m_{\rm Z})!!)$
- ILC should be prepared to run in GigaZ mode not to miss a great opportunity