Cost Issues of ILC Construction

Thursday, August 18, 2005 GG-5 Industrial Session 2nd ILC Workshop at Snowmass, Colorado

> Norihiko OZAKI Linear Collider Forum of Japan

Outline of My Talk

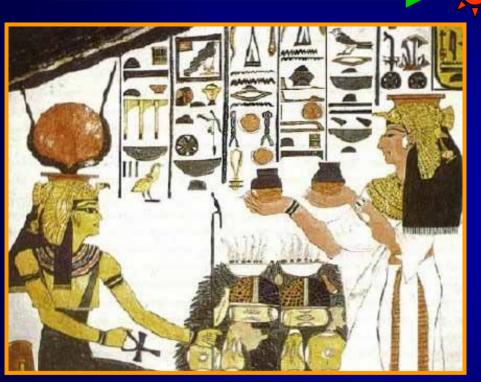
- In-kind contribution
- Cost estimation
- Cost reductions via industrial participation
- Conclusions

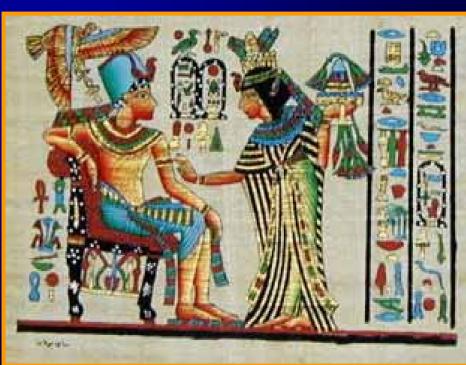
Importance of Cost Issues

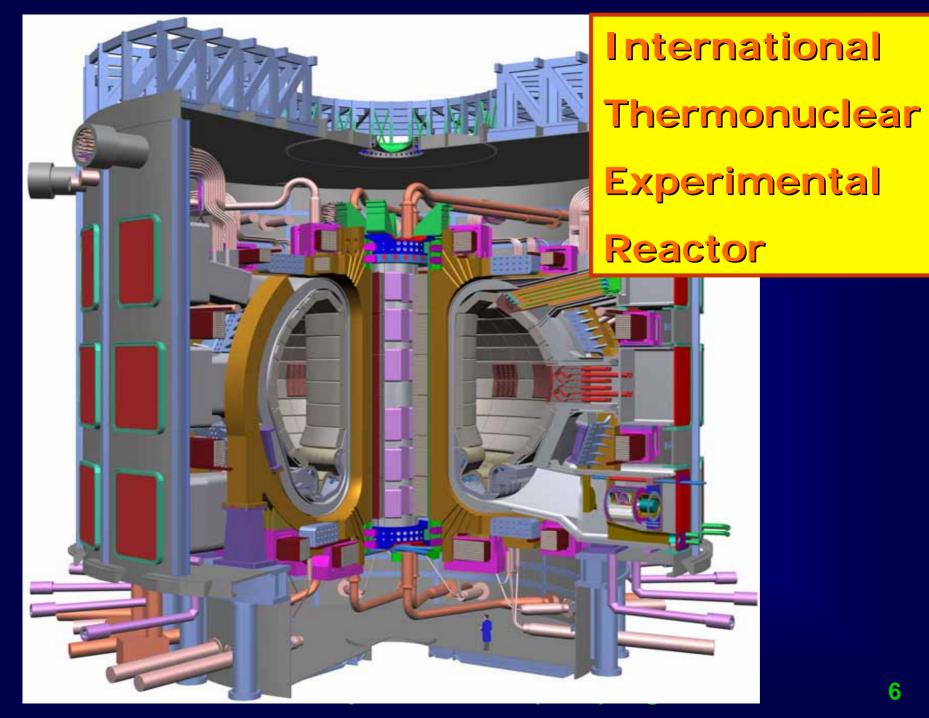
Off course

- ♦ Confirming global consensus for LC construction.
- ♦ Budgetary approval by financial agencies.

Practical importance for ILC community


♦ Cost data is a key for successful establishment of in-kind contribution scheme.

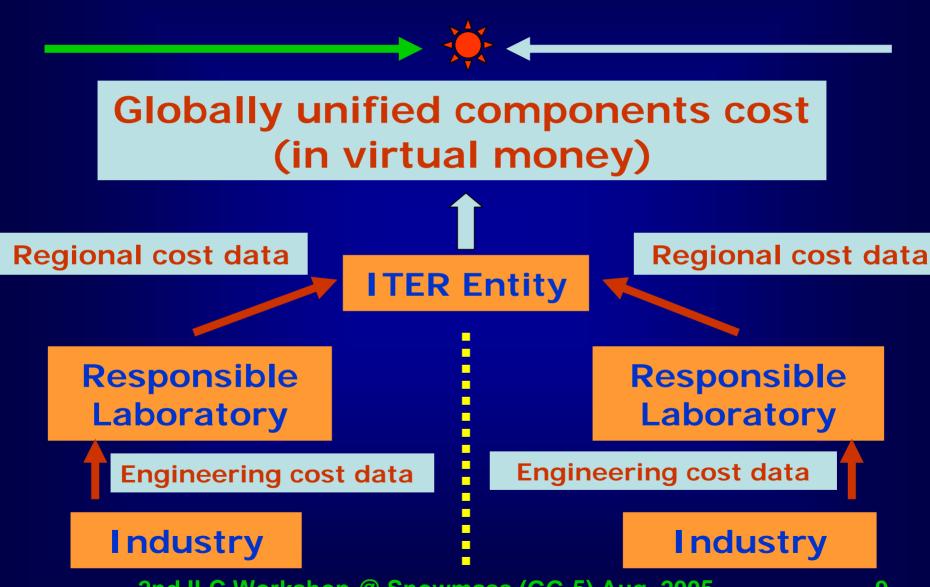

In-Kind Contribution, What?



- Constructing a huge and an expensive system by international collaboration.
- Participating countries contribute components and/or sub-systems to the project.
- Examples;
 - ♦ I TER
 - ♦ Space Station
 - ♦ International Radio Telescope (ALMA Project)

History of In-Kind Contribution

In-Kind Contribution in ITER (1)



- In-kind contribution scheme is properly designed in ITER Project and all participating parties agree with this scheme.
- This scheme is one of the best textbook for ILC project.

In-Kind Contribution in ITER (2)

- All components should be categorized according to the rule that these are fabricated by using key technologies or conventional technologies; the former the key component, the latter the conventional components.
- All components are evaluated in a globally unified virtual money, *i.e.* ITER Unit Account (IUA).
- These values are the basis of components allotment to participating parties.

Unified Cost in ITER

Components allotment in ITER

Scheme of components allotment is as follows;

- All components are allotted based on globally unified components cost,
- ♦ There are different contribution patterns for key components and conventional components, and
- ♦ Host country is burdened with infrastructure and civil engineering cost.

In-Kind Contribution in ILC

We must

- ♦ understand that in-kind contribution and cost estimation are two sides of the same coin,
- ♦ determine principles for in-kind contribution scheme as soon as possible,
- ♦ estimate all component costs at engineering, regional and global levels, and
- ♦ allot all components to three regions based on global unified costs.

Process for Cost Estimation (1)

Preparations by international entity

- ♦ Provide globally unified structural specifications and manufacturing drawings for all components.
- ♦ Define delivery date.
- ♦ Define clear responsibility for manufacturer.

Process for Cost Estimation (2)

Engineering cost;

- ♦ Collect cost data from industry.
- ♦ (at the same time) Collect idea for cost reduction.

Regional cost;

- ♦ Is determined by collaborative task of regional laboratories and industries.
- ♦ Feedback and iterations may be required for converging engineering cost data from companies.
 - It looks like Delphi technique.
 - Then we get regional cost data.

Process for Cost Estimation (3)

Regional cost data

 Highest?

 Medium?

 Lowest?

Oracle of Delphi

Process for Cost Estimation (4)

Global cost estimation by international entity

- Three regional cost data are naturally different each other, but have to be unified by taking into account regional industrial level, labor cost, commodity price index, and so on.
- ♦ Tough negotiation may be necessary.
- ♦ Globally unified cost are assessed for all components.

Construction cost

- ♦ A regional cost is not a true ILC construction cost. It is a cost expression that ILC is constructed within that region by that region only.
- ♦ True construction cost is a globally unified cost.

Allotments to Three Regions

- All components are allotted to three regions for inkind contribution.
- Allotments are done in a pre-determined proportion (usually even contribution) based on globally unified cost.
- Key components should be equally allotted to three regions.
- Conventional components should be allotted by negotiation among three regions.

Infrastructure

- Host region is burdened with facilities associated with infrastructure, such as electric power supply, cooling water system, air conditioning system, experimental buildings, etc.
- Civil engineering cost is also a burden to host region.

Procurements

- Components allotted to a region should be procured within that region.
- Procurement cost
 - Procurement cost should not be directly linked with the unified cost that is determined only for in-kind contribution allotment
 - ♦ It should be linked with regional cost.
 - ♦ The actual cost, therefore, may vary by regions because the industrial level, labor cost and commodity price index are different in three regions.

Problems Remained

Intellectual property rights (patents), especially those for key components.

Cost Reductions

There are three routes for cost reductions via industrial participation

- ♦ Production technology
- ♦ Systems engineering
- ♦ Joint fabrication factory

Cost Reductions via Production Technology (1)

- Each industrial company is characterized by its own production technologies including production facility, engineering skill, etc.
- In case when the design configuration and fabrication process of the ILC components fit to production technologies, cost might be remarkably reduced because no additional investment necessary.
- Reviews of product design and fabrication process are therefore very important.

Cost Reductions via Production Technology (2)

- Cost at industry scale fabrication is lower than that at laboratory scale fabrication.
- But don't expect too much for cost reduction through mass production, because ILC is not large enough for getting meaningful learning effects.
- Quantitative analysis is necessary.

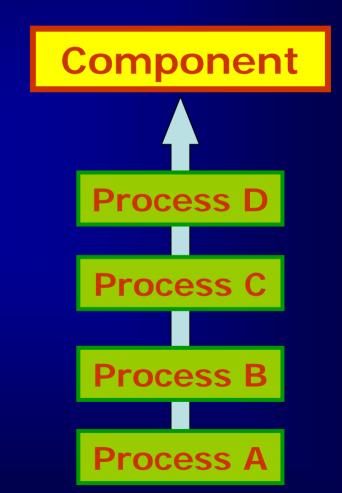
Cost Reductions via Production Technology (3)

Cumulative Production

Cost Reduction via Systems Engineering (1)

Systems engineering approaches to complicated fabrication process such as

 ♦ Fabricating a component with multi-stage process (ex. Material preparation, electro-chemical polishing, machining, EB welding, ...) by different industrial companies.


Cost Reduction via Systems Engineering (2)

Vertical Integration

All in one company

or

 One company supervises several companies

Cost Reduction via Systems Engineering (3)

The other fields where systems engineering approach are effective are;

- ♦ Assembling a sub-system with a lot of components,
- Sub-systems where consistency among them is important, such as cryostat and cavity.

Cost Reduction via Systems Engineering (4)

Systems engineering for complicated fabrication process and integration of sub-systems will be effective in the scopes of

- ♦ Process optimization
- ♦ Delivery time control
- ♦ Cost control
- ♦ Quality control
- ♦ Logistics control

Cost Reduction via Production Facility (1)

▶ 👾 ←

Joint factories for avoiding duplicated investments

- ♦ Electro-chemical polishing facility,
- ♦ EBW facility,
- ♦ Etc.
- Test facility using liquid helium is another example for joint facility.

Cost Reduction via Production Facility (2)

Horizontal Integration

Company X Company

Joint Factory for Process (N)

 Rental Factory built by international entity

or

 Factory jointly established by industry

Cost Reduction via Production Facility (3)

▶ 👾 ←

These facilities might be used by industry with reasonable charge (rental factory).

It does not matter whether these facilities are located on-site or off-site.

Rental Factories

Concluding Remarks (1)

In-kind contribution and cost estimation

- ♦ These are two sides of the same coin.
- ♦ In-kind contribution scheme should be properly designed as soon as possible, and all participating regions should agree with this scheme for successful collaboration.
- ♦ In this context, cost estimation is one of the highest priority issues for realizing ILC.

Concluding Remarks (2)

- Reviews of design and fabrication process in order to match with industrial production technology,
- ♦ Systems engineering approach (Vertical Integration), and
- ♦ Joint production facility (Horizontal Integration).

