Cost Estimates in Japan

for GG5 at Snowmass WS 2005.8.16 T. Shidara

- 1. Organization of ILC-Asia Costing
- 2. Method Used for Cost Estimation
- 3. Issues
- 4. What We Need
- 5. Comments to the Required List

1. Organization of ILC-Asia Costing

ILC-Asia Costing Coordinator : T. Shidara with ILC-Asia WGs and LC office

Supporting Experts :

- S. Noguchi, K. Saito (SC Cavities),
- K. Tsuchiya, K. Hosoyama (Cryomodules & Cryogenic System),
- S. Fukuda, H. Matsumoto (RF Sources & RF Components),
- R. Sugahara (BT & Magnets),
- H. Hayano (Monitors & LLRF),
- M. Kuriki (Damping Rings & Injectors),
- K. Furukawa (Control),
- S. Ban (Radiation Safety),
- A. Enomoto (Conventional Facilities)
- + LC Forum of Japan + Asian Labs

2. Methodology Used for Cost Estimations

Cost estimation related reports : Enomoto et al for GLC Cost Estimation (2003-04) Yoshioka et al for TESLA Assessment Task (2003-04)

With construction experiences of : TRISTAN, KEKB, Electron/Positron Injector Linac, ATF, (in future + XFEL, STF-I, STF-II, SMTF,)

References :

TESLA TDR

Report on the TESLA Engineering Study/Review (2001) US Linear Collider Option Evaluation Study (2004)

Methodology Used for Cost Estimation by Enomoto et al.

(1) Cost survey & scaling	Injector
(2) R&D cost x assumed reduction factor	Main linac components: Klystron, Modulator, Waveguides
(3) Cost evaluation based on a production model	Main linac structures
(4) Survey of known commercial data	Vacuum pumps, DC power supplies
(5) Industry estimate	Conventional facility

Japanese Industry Cost Estimation Form

Cost Estimation Method Differences

- The contingencies and escalations are included only implicitly in the Japanese project management
- The design and management costs are included also implicitly in the construction costs
- Salaries for the laboratory staff are not included; the salaries for out-sourcing staff are included
- All required R&D is charged separately before project

TESLA Assessment Task by Yoshioka et al.

- First Assessment Task:
- 1. Technical assessment of TESLA500 original design
- 2. Cost evaluation based on KEK experiences of SRF
- Second Assessment Task:
 - Further technical assessment and cost evaluation for 21000 9-cell sections

What was clarified in the First Assessment Task

- (1) The items, with small technical risks or global standards of cost, have small cost differences between the TDR and KEK evaluation
- Examples: Civil engineering, Infrastructure (excluding cryoplants), Nb material, Surface treatment, Klystron
- (2) Technical items specific to the TESLA scheme showed big cost differences
- Examples: Cavity fabrication, RF power coupler, Cryomodule fabrication and assembling, Klystron modulator

(3) Others

Examples: RF power distribution systems, HV cables, Cryoplants →Present "Standard" cost in Japan is high Second Assessment Task for mass-production of 9-cell sections

- 1. Basic engineering design, fabrication method →KEK's responsibility
- 2. Principal contractor's responsibility→"high-tech" parts: EBW, QC, supervising sub-contractors, process management
- 3. Machining and cup forming \rightarrow "conventional technologies" \rightarrow order to small- or medium sized sub-contractors
- 4. EBW→dedicated high-speed machine with multi-chamber type , capital investments under KEK responsibility

Breakdown of TTF cost

Nb material cost	(1/3: 2.25 M yen)	TDR: 1.28 M yen
Fabrication cost	(2/3: 4.50 M yen)	TDR: 1.50 M yen

Further breakdown of the TTF fabrication cost (4.50 M yen)

EBW	49.3%	2.219 M yen
Machining	35.8%	1.611 M yen
Inspections, quality guarantee	9.4%	0.423 M yen
Cup forming	3.6%	0.162 M yen
Others	1.9%	0.086 M yen

Summary of the Second Assessment Task

	Unit Cost M yen	Sub-total B yen	EBW
TTF	6.75		Conventional multipurpose single-chamber-type
TDR	2.78	58.4	Dedicated high speed machine
First Assessment	8.36 excluding HOM couplers	175	Conventional multipurpose single-chamber-type
Second Assessment	2.97~3.46	62.4~72.7	Dedicated high speed machine

- There is a *possibility for a drastic reduction* in the fabrication cost of the 9-cell cavities including the material cost from the First Assessment when various conditions are given
- Further studies are needed for RF couplers, cryomodules, and klystron modulators

3. Issues

Baseline design : one tunnel vs two tunnels, positron source scheme, damping ring scheme, 1 TeV extension, 35 MV/m?, +++

Detailed design of each component :

cavity fabrication process, klystron modulator type, power distribution scheme, +++

Industrialization : essential for cost estimation STF, TTF, XFEL, SMTF, +++

Regional difference :

contingency, escalation, design and management costs, salaries for lab staff, R&D charge, +++

4. What We Need

- Aside from the agreement over the contents of BCD, we need to initiate the development of sufficiently detailed WBS for practical cost evaluations
- Time schedule for cost studies
- Guidelines for the inter-regional cooperation and information sharing (for instance, detailed data for TESLA TDR)
- Guidelines for cooperation with the industrial sectors (regional and international)

5. Comments to the Required List

- Current practice and methodology for Project cost and schedule estimates
 Enomoto et al for GLC Cost Estimation (2003-04)
 Yoshioka et al for TESLA Assessment Task (2003-04)
- 2) Process for establishing a set of "rules" for ILC cost and schedule estimates

Do we need "rules"? We really need BCD, time schedule and sufficiently detailed WBS, as well as guidelines for inter-regional cooperation, information sharing and cooperation with the industrial sectors.

Comments to the Issues – Continued1

3) How to handle contingency, overheads, "in kind" contributions, lab or university contributions etc. Each region is different.

Respect the regional difference; Contingency and escalation are implicitly included, and salaries for lab staff are not included in Japanese project. "In kind" contributions might be a baseline for International collaboration.

- 4) Include actual estimates for industrial work in a public cost estimate? Current practice is yes in US, but no in Europe, Japan?
 - Probably is no in Japan.

Comments to the Issues – Continued2

5) Profit: What is the correct methodology to include profit in estimates for industrial work?

?? Ranging from 10 - 30 % in KEK. 20 % is nominal.

6) Should ILC commission industrial cost studies of ILC in all 3 regions?

Yes, as long as assuming the construction of ILC by sharing three regions.