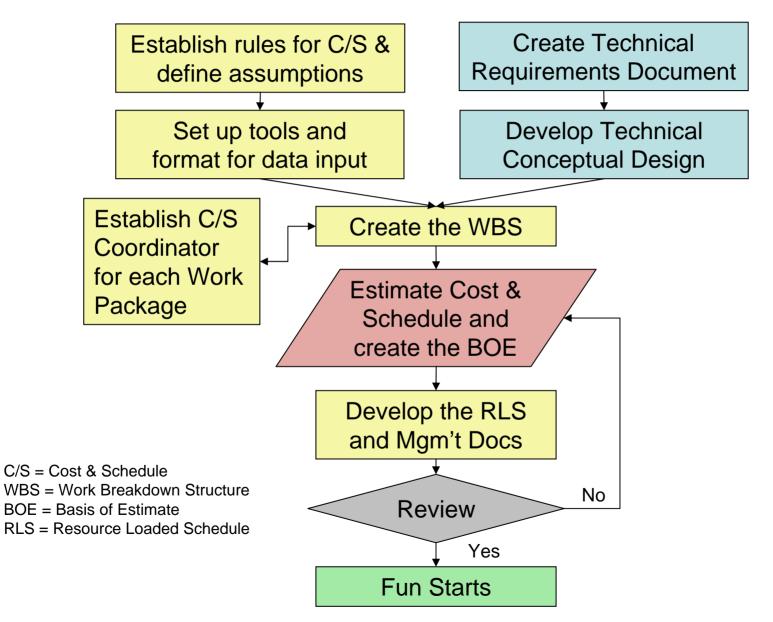
Cost & Schedule US Perspective

Rich Stanek

Outline

- Opening Comments
- Observations
- General Methodology and Issues
- Questions in the Charge
- Proton Driver Example
- Summary


Opening Comments

- My view of this Cost & Schedule (C/S) Session:
 - This talk => More of a guideline to stimulate further discussion rather than a prescription/tutorial for how to do it
- Globally, there are differences in C/S methodology
 - Assumptions (what's in and what's out, who's responsible for overruns, how to calculate contingency...)
 - How detailed an estimate is required
 - Basis of Estimate (how one justifies the numbers)
 - Software used (commercial, home-grown)
 - General emphasis/goals of the process are even different
- Need to agree on the approach for Cost/Schedule exercise
 - An all inclusive estimate with nothing hidden or assumed
 - A more global estimate that acknowledges different approaches in the three regions => keeps ILC from being "priced out of the game"

Observations

- If you know the answer before you perform the Cost & Schedule exercise => expect problems
 - Cost overruns and schedule slippage
 - Technical compromises
 - Reduced performance to begin with or less QC steps (more risk)
 - Possible descoping (leads to required "upgrades")
 - Results in "Blame Game"
- Set the <u>rules</u> for the C/S exercise and develop the <u>tools</u> before asking people to fill in the numbers
 - Helps to assure consistency
 - Allows estimation of the cost, schedule and risk concurrently
- People are taking this more seriously (these days)
 - Shock of projects actually being cancelled

General Methodology

Some Issues to Resolve

- Defining end of R&D vs. beginning of the Project?
- How to handle (not all inclusive):
 - Assembly and test facilities (if needed in the R&D phase)
 - Scientist salaries
 - G&A that varies widely across institutions
 - Overheads such as space, floor or utility charges
 - Efficiency or error rates and learning curves
- Basis of Estimate can be made up by
 - Catalog price
 - Vendor quote
 - Compare to similar projects
 - Time in motion study
 - Parametric analysis
 - Physicist/Engineer estimate

All have different risks and require different levels of contingency

Some Issues to Resolve (cont'd)

- Work Breakdown Structure (WBS)
 - How to structure it and how deep to go?
 - What's the appropriate level to allocate costs?
- Cost Estimate
 - Define level of confidence/risk (50/50 Rule, probabilistic...)
 - Contingency methodology
 - EDIA (bottoms up, % of cost or complexity of work [# of drawings])
- Resource Loaded Schedule (RLS)
 - Common resource file
 - Fully loaded salaries
 - Common calendar
- Cost Accounting (Earned Value Analysis)
 - Compare \$ or hours

Tools Required

• What are the tools?

- Data/Information Manager (web accessible)
- WBS development software
- Requirements database and risk assessment software
- Spreadsheet (or equivalent) for cost estimate (MS Excel...)
- Schedule Software (MS Project, Open Plan, Primavera...)
- Cost Accounting Software (COBRA...)
- Would like all to be interoperable
- Simple user interface for data input and monitoring

Current Practice

- What is the current practice and methodology for project cost and schedule estimates?
- Surprisingly, there seems to be agreement (in the US) as to how to address cost and schedule methods for DOE projects => a direct result of DOE Guidelines (DOE Order 413.3) and Lehman Reviews
 - Critical Decisions and what is required to meet them
 - WBS, Cost Estimate including contingency, Basis of Estimate, Resource Loaded Schedule, Milestones & a way to track them, and a plethora of management documents (including risk analysis and management)
 - In all large projects => Earned Value Reporting is required
 - Peer Review is a powerful tool for forcing consistency and accuracy

Rules

- What should be the process for establishing a set of "rules" for ILC cost and schedule estimates?
- Need agreement as to which C/S System will be used
 - Can/should this be different in each region?
 - Include all costs? => Nothing hidden or assumed
 - How detailed (what level of the WBS to go down to)?
 - How to handle "in kind" contributions, currency variations, vendor estimates, contingency, risk, or common calendar for work?
- Need to have some level of "stable" conceptual design
- Need a consistent set of tools to perform the C/S work
- With this in hand => form a Global C/S team with representatives from each region and give them the necessary resources to manage the effort
- Data needs to be globally accessible (ILC/PDM System)

Specific Issues

- How should we handle contingency, overheads, "in kind" contributions, lab or university contributions?
- Two approaches
 - Manage the project the same way no matter where or how the component is built or funded (ILC managers are part of process)
 - Treat components as deliverables and let the responsible party worry about overruns, overheads, etc. (fixed price contract)
 - Who really controls the specification?
- How to "value" contributions?
 - Cost everything as if it were being done in one country
 - Value the contribution at this estimated cost => don't get extra credit if it costs you more
- "True" contingency should be managed by the project
 - Held at a high level by each Region/Funding Agency
 - Part of a common fund (but still tied to the source of funding)

Industrial Work

- Should we include actual estimates for industrial work in a public cost estimate?
- Cost estimates must have an accurate BOE
 - Vendor estimates are a critical part of this process
 - Should keep the name of the vendor classified (Vendor A) and not release confidential back up calculations or analysis
 - Be Careful ! => Budgetary estimates are non-binding and conditions in industry change with time
 - Need to factor in the <u>risk</u> of a single sourced procurement and the "strain" that a project of the ILC scope can place on the system

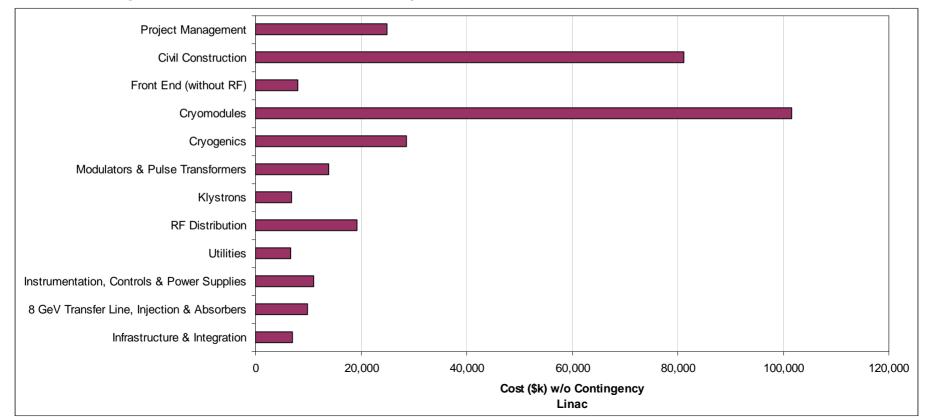
Vendor Profit

- What is the correct methodology to include profit in estimates for industrial work?
- Needs to be included in a bottoms up estimate
- Vendor budgetary quotes include profit, overhead, etc.
- Civil estimates (depends on the level of complexity)
 - Estimates tend to be bottoms up and parametric
 - Overhead & Profit (OH&P) ~ 20-25% on top of the whole job
- Components => moderate-size company (generalization)
 Overhead ~ 40-60%, G&A ~ 12-15%, Profit ~ 10-15%
- Components => large-size companies
 - Numbers could double
 - Tends to be more negotiation involved in setting percentages
- Machined parts (competition drives the cost down)
 - \$60 to \$120/hour (or more) depending on type of machine required

Industrial Cost Studies

- Should ILC commission industrial cost studies of ILC in all 3 regions?
- Independent cost studies are a good way to certify the accuracy of the cost estimate
 - In the US, one could certainly imagine that the estimate would be scrutinized, reviewed and audited by agencies outside of the DOE
 - Work currently going on in Europe is an excellent start
- The "need" to do it in all three regions is a function of the belief that the results would be substantially different
 - Better yet could there be a common industrial cost study in which vendors from different regions participate?

Developing a Cost Model


- How do we develop a cost model for ILC?
- Don't jump into creating the numbers too quickly
 - You probably won't like the results
- Focus on "the big picture"
 - Get agreement as to what the model is first
 - Involves: ILC management, Funding Agencies, Legislatures, etc.
 - Put the tools in place
 - Use the work of previous projects and current proposals for similar work to act as a guide for the ILC estimate
 - TESLA Report, XFEL, SNS, Proton Driver can all help to verify the accuracy of the ILC approach
 - Clearly, industry has to get involved in developing the cost estimate as they will be the only possible source for the scope of components required
 - Need to involve manufacturing experts

Cost Model (cont'd)

- Looking at potential cost drivers
- Hopefully the Civil Planning Group can develop an accurate civil construction cost estimate based on representative sites in each region
 SNS, XFEL, PD and NuMI experiences will all help
- Won't know the "bottom line" cost of building a cryomodule until a factory is set up to produce them and you run it like an assembly line (understand each step of the assembly process and look to optimize each part) => industrial studies help
- Costs for cryogenic plants and distribution should be able to be estimated based on similar projects and an accepted cost function relationship (cost vs. capacity)
- Electronics and rf power sources benefit from constant technology advances (lowers price) => translates to reliable estimates
 - As long as you are not too aggressive on taking advantage of expected "learning curves" and things like Moore's Law

Proton Driver Example

Recently, a preliminary cost estimate was developed for the FNAL Proton Driver in order to establish a reasonable Range of Values. The base cost estimate was \$412M (using an across the board 30% contingency) with a range up to \$500M. As always, the assumptions are key to understanding the estimate (what's in and what's not).

Proton Driver (cont'd)

 Cryomodule cost was estimated based on a combination of vendor quotes, DESY, JLab and SNS experience and FNAL engineering estimates. Review Committee felt that this cost was appropriate for this stage of the project. *The cost for setting up the assembly and testing facilities was not included.* (Synergy between PD and ILC) A Resource Loaded Schedule is currently being developed which will further refine the cost estimate.

WBS	WBS LEVEL			ITEM	<u>Unit</u>	M&S Cost	Quantity	M&S Tot.	Eng/Mgr	Tech	<u>Phys</u>	Labor	Total
1.	2.	3.	4. 5.			\$		\$k	FTE-yr	FTE-yr	FTE-yr	\$k	\$k
4.	5.			Beta=1 Elliptical Cavities Cryomodules	C.M.	1,531,00	0 36	55,116	20.03	66.81	5.35	8,082	63,198
4.	5.	1.		Beta=1 Cryomodule Components	ea	1,521,00		· · · · · · · · · · · · · · · · · · ·	4.80	0.00	1.20	624	55,380
4.	5.	1.	1.	Vacuum Vessel & Pipes	ea	300,00	0 1 /CM	300					300
4.	5.	1.	2.	Cavities	ea			742	0.00	0.00	0.00		742
4.	5.	1.	2. 1.	Raw Niobium	ea	26,00		208					208
4.	5.	1.	2. 2.	Cavity	ea	34,00	0 8/CM	272					272
4.	5.	1.	2. 3.	Processing	ea	14,00	0 8/CM	112					112
4.	5.	1.	2. 4.	Helium Vessel	ea	150,00	0 1 /CM	150					150
4.	5.	1.	3.	Quads	ea	29,00	0 1 /CM	29					29
4.	5.	1.	4.	Supports	lot	70,00	0 1 /CM	70					70
4.	5.	1.	5.	Magnetic Shields	lot	21,00	0 1 /CM	21					21
4.	5.	1.	6.	Couplers	ea	31,50	0 8/CM	252					252
4.	5.	1.	7.	Tuners	ea	11,50	0 8/CM	92					92
4.	5.	1.	8.	Instrumentation	lot	1,00	0 1 /CM	1					1
4.	5.	1.	9.	Interconnection Parts	lot	14,00	0 1 /CM	14					14
4.	5.	1.	10.	EDIA	lot			0	4.80		1.20	624	624
4.	5.	2.		Beta=1 Cryomodule Assembly	ea	10,00	0 36	360	15.23	66.81	4.15	7,458	7,818
4.	5.	2.	1.	Assembly (LHC experience)	ea		36 /CM	0	13.85	64.04	3.46	7,051	7,051
4.	5.	2.	2.	Installation	ea	10,00	0 36 /CM	360	1.38	2.77	0.69	407	767

Summary

- Cost and Schedule methodologies differ in the three regions of the ILC Project
- A common approach must be formed to allow comparison and to be able to incorporate input from all three regions
- Basic method for cost and schedule estimation involves
 - Set the rules for the C/S process
 - Define the assumptions
 - Establish a Technical Conceptual Design
 - Develop a Work Breakdown Structure
 - Estimate the Cost & Schedule (including contingency & risk)
 - Create the Basis of Estimate
 - Input the data to a Resource Loaded Schedule (with milestones)
- We are ready to move forward with the process of developing a cost and schedule estimate for the ILC