ILC Cavity BPMs

Outline

- Goal:
 - Compare ILC requirements to "state-of-the-art"
- What are ILC Requirements?
- What kinds of BPMs?
 - Q BPMs
 - HOM BPM
 - Diagnostic BPMs
 - "Specials"
 - Energy Spectrometery
- Detailed Example: KEK ATF cavity BPM work
 - BINP Cavity BPMs
 - KEK Cavity BPM
 - ATF2 BPM

ILC Beam Position Monitor Requirements

- Aperture
- Resolution
 - Spatial
 - Few microns?
 - Or << beam spot size
 - In order to find source of jitter
 - Temporal
 - Bunch-by-bunch
 - Average over some/all bunches in a train?
- Accuracy (*i.e.* where is center of BPM with respect to alignment fiducials?
- Stability
- Need solid requirements on which to base design

Why Cavity BPMs?

- Resolution
 - It is easy to get adequate beam signal in a reasonable processing bandwidth
- Bandwidth
 - Easy to design cavity for bandwidth low enough for conventional signal processing
 - High enough for bunch-bunch separation
- Processing Scheme
 - Want to digitize and process signals in conventional manner
 - processing bandwidth where COTS chips are
 - i.e. <20 MHz processing bandwidth
- Stability
 - Avoid techniques involving small differences of large signals
 - Gnat's eyelash timing stability
- Accuracy
 - Centering established by reasonable machining tolerances.

Why not stripline or buttons?

- Signal is small difference of large numbers
- Differences taken externally to transducer
 - Analog difference (hybrid or difference amp) OR
 - Digital difference (after separate analog processing chains)
- Subject to mismatch, drifts
- Impacts
 - accuracy
 - stability
 - dynamic range
- Cavity BPMs reject common mode several ways:
 - Frequency discrimination
 - Spatial discrimination
 - Residual common mode can be microns
 - Stripline/Button: $\Delta = \Sigma$ when Y ~ R/2

Example: KEK-ATF Cavity BPM

- C-Band Cavities from BINP (Vogel, et al)
 - Nominally 6426 MHz
 - Dipole-mode selective couplers
- Livermore Spaceframe
 - 3 cavities fixed with respect to each other
 - Hexapods for 6 degrees of freedom of alignment
 - flexure legs
- Dual Downconversion Electronics:
 - First IF at 476 MHz
 - Second IF at 25 MHz
- Digitize 14 bits at 100 MSamples/sec
- Expect few nm resolution
- Compare consistency of three BPMs

C-Band Cavities

BINP Cavities (Vogel, et al.)

2cm aperture
Dipole-mode
selective
couplers

Cross-sectional view of BINP cavity BPM 6426 MHz, (5p. in KEK ATF + 1p.). 2000.

- 1.- Cavity sensor .
- 2-Heater.
- 3 Temperature sensor.
- 5 Coupling slot.
- 6 Output waveguide.
- 7-Output feedthrough.
- 8 Beam pipe.
- 9-Vacuum flange.
- 10 Support plate.
- 11 Y position output.
- 12 X position output.
- 13 Heater control connector.

Incoming Beam Parameters

- Charge Q ~ 1.5 nC
- Spot size:
 - $\sigma_x \sim 80 \ \mu m$
 - $-\sigma_y \sim 8 \ \mu m$
 - $\sigma_z \sim 8mm$ (!)
- Energy
 - dispersion ~ 1e-3
 - ΔE/E ~5e-4
- Position & angle jitter:
 - $-\sigma_x$ 20 μm
 - $-\sigma_y$ 3.5 μm
 - σ_x ' 1000 µrad
 - $-\sigma_{y}$, 2 µrad

Processing Algorithm

- Digital Downconversion:
 - Multiply digital waveform by complex "local oscillator" $e^{i\omega t}$
 - Low-pass filter (currently 2.5 MHz B/W)
- Sample complex amplitude of position cavity at "peak"
- Divide by complex amplitude from reference cavity
- Scale/rotate by calibration constants
- Refine calibration with linear least-squares fit to other BPM measurements, e.g. $y_2^{pred} = f(y_1, y_3, x_2)$
 - Removes
 - Beam jitter
 - Rotations
 - calibration errors.
 - Monopole modes appear as offset in (I,Q) space
 - As do mixer offsets, rf leakage

Calibrate

- Move one BPM at a time with movers
- Extract BPM phase, scale, offset as well as beam motion by linear regression of BPM reading against mover + all other BPM readings.

Move BPM in 1 µm Steps

BPM Y2 Against Mover

- Y off by 80 microns
- ADCs heavily saturated
- Got Y trajectory consistent to within 1 micron of 80
- Should do better

X Resolution

X2 vs. Prediction

What limits resolution?

- Why don't we get 2 nm rms?
- Calculated loss factor in dispute
 - Power per Coulomb per mm
- Re-analysis of cavity revised loss factor down by factor of 10
 - Incorporate waveguide and coupler into simulation
 - (factor of 3 in resolution)
 - Measured loss factor somewhere between
- Compare resolution to that calculated from measured noise
 - Measure broadband electronics noise in samples digitized before beam arrival ~ 4 ADC counts rms
 - Measure phase noise by injecting cw tone in frontend
 - Seems to explain observed resolution

Stability Check

Stability

- Stability excellent
 - At least BPM to BPM
- Good running periods were only a few hours
 - Sporadic shifts for BPM studies
 - We moved BPMs (as a unit) a lot to chase the beam
- Drifts look very small over short term (~ 2 hours)
 - Need to look at data to see when movers have been touched
 - (get unbiased estimate of stability)
- Watch out for mechanical drifts in the cavity supports
 - After all a micron is rather small mechanical motion

Status

- Resolution is excellent
 - but not as good as expected
 - We don't yet understand our noise in detail
- Have not yet established:
 - absolute accuracy
 - Long-term stability (>> 2hrs)

KEK Cavity BPM

- Very compact design to save space
 - Waveguide has fold, asymmetry
- Differs from BI NP design
 - BINP BPM has long waveguide taper to coax adapter
 - KEK coax adapter is very close to cavity

Structure – KEK BPM

Cavity Geometry Choices

ATF2 BPM

BINP BPM

KEK BPM

C. Nantista

Cavity Design Lessons

- Must treat as coherent system:
 - Cavity
 - coupling slots
 - Waveguide
 - coax adapters
 - Electronics
 - In particular: reflections from first element of electronics
 - Circulator? (SLAC E158)
- Mitigate latter 3 effects by under-coupling cavity?
 - Reflections/distortions induced by coupler, etc have reduced influence on modes in cavity
 - Design for higher loss factor to maintain resolution
 - LCLS Cavity BPM

Discussion Topics (more talks?)

- Common mode effects
 - Signatures
 - Tolerance
 - processing scheme, algorithm dependence
- Degenerate modes
 - Parameters
 - Tolerances
 - processing scheme, algorithm dependence
 - Consequences of breaking degeneracy
 - Is the medicine worse than the disease?
- Bunch-Bunch Measurements
 - Temporal resolution required to cleanly extract information from adjacent bunches?
 - Definition of "clean"
 - Correlated error between bunch measurements
 - Or just the increase in noise due to signal subtraction
 - Measure every bunch, or running average over a few bunches?

Monopole + Dipole Spectrum

Monopole + Dipole Spectrum

- Spectrum simulated at input to first amplifier (LNA)
- Left spike is first monopole mode as suppressed by front-end filter
- Right spike is second monopole mode
- Middle plateau is the tail of the monopole mode in the bandwidth of the first filter
- Tiny glitch on top of plateau is dipole signal
 - It is extracted cleanly after down-conversion and filtering
- But first amp must deal with the power of the entire bandwidth input

Simulation of Inband Monopole Signal

Simulation of Dipole + Monopole

Analysis of Degenerate Mode Effects

Excitation

- Beam passes through cavity
- Excites many cavity modes
- Evolution
 - Modes evolve in time
 - Phase of each mode evolves at its frequency
 - Amplitude decays with mode's time
- Extraction
 - Output couplers extract energy
 - Each output port is linear combination of modes
- Evaluation
 - Process the data
 - Estimate Charge, Position, Pitch, Yaw, Quadrupole moment, ...

More Discussion Topics

- Electronics Requirements
 - Noise
 - Dynamic Range
 - Input protection
 - Processor for SLAC linac cavities (~40 years old) now have input protection to ~1kW (!)
 - Linearity
 - Impacts
 - resolution
 - Common mode / degenerate mode rejection
 - Accuracy
 - stability

Even More Discussion Topics

- Modeling/Simulation
 - EM Field solvers
 - Cavity/coupler
 - Waveguides/caox adapter
 - MAFIA,...
- Whole System
 - Parameterized cavity
 - Electronics
 - Digital Procesing
 - Simulink, SystemView, Matlab, ROOT,...

SystemView Model

Conclusions

- Cavity BPMs offer:
 - Resolution
 - Accuracy
 - Stability
 - Simplicity
- Need:
 - Solid requirements on which to base design
 - Careful analysis of design choices
 - Beam test to validate analysis
 - Analysis to understand beam tests, etc...