Himel 11: Cavity Shape/Iris Size @ 500GeV

Cavity Shape/Iris Size @ 1TeV

KEK K.Saito

Related Groups: GG5 no input (now)

WG1 input, thanks

WG2 input, thanks

WG5 discussion leader

Himel 11: Cavity Shape/Iris Size @ 500GeV

- Options
 - TESLA shape
 - Low-loss shape
 - Re-entrant shape
 - Possibly, Superstructures with any of the shapes above
- Pros/Cons
 - TESLA shape:
 - Well understood and tested with a large number of samples (>100)
 - Could be short of gradient margins (Eacc ≤ 41MV/m)
 - Other shapes:
 - Reduced surface magnetic field → Potential for higher gradient (47MV/m).
 - 10-20% lower cryo load → Potential cost saving in operation
 - 10-20% higher surface electric field → Field emission
 - - → Tolerance tighter (TESLA $300\mu m \rightarrow 220\mu m$)
 - Requires significant R&D to establish performance on, field emission and HOM in multi-cell operation, wake field and so on.
 - Superstructure:
 - Fewer couplers, improved packing factor → Potential of significant cost savings
 - Require Demonstration with LL/RE shape
 - Couplers with doubled power
 - Superconducting joints highly desirable
 - Otherwise, facilities with doubles sizes

Input from WG1

Cavity Shape (11)

- Since short-range wakefields seem to be the least of our worries, may not be important (to be verified)
- Long-range wakefield effects need to be studied

Input from WG2

Comment on Iris Size from a WG2 perspective

 Reducing the cavity iris size to 60 mm diameter would probably be OK from a wake-field perspective and

would reduce cooling requirements by at least 21% and save 67 M\$ in cryoplant costs for a fixed gradient.

It would also reduce the cavity fill-time by 16%, which would reduce the rf system cost by about 11 M\$.

Himel 11: Cavity Shape/Iris Size @ 500GeV (continued)

- Shape of Choice: TESLA shape
 - Performance and cost best understood
 - Presently, existence proof of 35 MV/m from vertical test, horizontal test, long-term test, one cavity in cryomodule
 - In near future, Cryomodule #8 with 35 MV/m to be completed at TTF (& similar at KEK-STF)

Himel 11: Cavity Shape/Iris Size @ 1TeV

- Options
 - LL/RE
 - Superstructure with LL/RE
- Pros/Cons
 - LL/RE
 - Reduced surface magnetic field → Potential for gradient margins
 - Reduced cryo-load
 - Higher surface electric field → Field emission
 - Reduced iris radius → Studies on HOM and wake required.
 - Superstructure
 - Fewer number of couplers + Improved packing factor → Cost savings
 - Require:
 - Couplers with higher (doubled) power capabilities
 - Facilities with doubled sizes
 - SC sealing, highly desirable, needs to be developed
- Required R&D
 - LL/RE
 - Multi-cell operation in cryomodules
 - Superstructure
 - Multi-cell demonstration with LL/RE shaped cavities

Himel 11: Cavity Shape/Iris Size @ 1TeV (continued)

Both (new cavity shapes and Superstructure) will be read by at least 1TeV upgrade construction but,

- Shape of Choice:
 - May the best man win!